
AD-A245 484 .

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
INVESTIGATING THE UTILITY OF COUPLING

COCOMO WITH A SYSTEM DYNAMICS
SIMULATION OF SOFTWARE DEVELOPMENT

by

Richard W. Smith

September, 1991

Thesis Advisor: Tarek K. Abdel-Hamid

Approved for public release; distribution is unlimited

92-02631

! /z /llHl ii llil
,, , /g lii/40

Gl Rk D'
TIllllm l C lll i l lll lll

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

55

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME Oc FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, andZIP Code) '0 SOURCE OF FUNDING NUMBERS
Proram t ilement No Projeu No [dLs No Won, 'in.! Acceson

Number

11 TITLE (Include Security Classification)

INVESTIGATING TIlE UTILITY OF COUPLING COCOMO WITIt A SYSTEM DYNAMICS SIMULATION OF
SOFTWARE DEVELOPMENT (UNCIASSIFIEDi

12 PERSONAL AUTHOR(S) Smith, Richard W.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master's Thesis From To September 1991 175
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the ollicial policy or position oifthe Department of [)efense or the U.S.
Government.
1 7 COSATI CODES 18 SUBJECT TERMS (continue on reverse itf necessary and identify by block number)

FIELD GROUP SUBGROUP ",st Estimation, Software Project Management, System)ynamics Simulation Model,
COCOMO

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Cust estimation of software, in this era of budgetary constraints, is vitally important to the success or lailure of'a suftware project.
Although there are many cost estimation models available, cost overruns and late deliveries still persist.

Coupling the Constructive Cost Model ICOCOMOI and the System Dynamics Model of Software Project Management can provide
a tool tA study project management over the life of a project, to use sensitivity analysis to enhance COCOMO's cost driver set, and to
utilize an automated optimization system for software cost estimation in a single or multi-project environment. This new type of model
creates a means to study the multi-project environment and determine what the advantages and disadvantages are to sharing resources
between different software projects.

Several 'C' progrars were deve4oped, that when interfaced and coupled with the system dynamics model, provide a 'ouI to o.ptimize

cost estimates in a two project environment. It also creates an environment to perform extensive sensitivity analysis tor the enhancement
ol' COCOMO's cost driver set in the single and two project environment.

20 DiSTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECuPITY CLASSIFICATION

N(,.W',fIt UNI'Mii i SAWi AS HIPOWi rL Ii, osiNs UNCI.ASSIFIE)

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Tarek K Abdel Ilamid (408 646-2686 AS/All

DD FORM 1473.84 MAR ?Q1 APR editiin may be used untl exhausted SECURITY CLASSIFICATION OF THIS P (it

All other edttiois are obsotete U NCLASSIFIE)

Approved for public release; distribution is unlimited.

Investigating the Utility of Coupling COCOMC)

with a System Dynamics

Simulation of Software Development

by

Richard W. Smith

Lieutenant, United States Navy

B.S., United States Naval Academy, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

September 199

Author:_____________________________

Richkrd Wv Smith

Approved by: _ _ _ _ _ _ _ _ _ _ _ _ _ _

Tarek K. Abdel-Hamid, Thesis Advisor

Mag =el Secnd~eeer

Dai.WipeCi'-a

ABSTRACT

Cost estimation of software, in this era of budgetary constraints, is vitally important

to the success or failure of a software project. Although there are many cost estimation

models available, cost overruns and late deliveries still persist.

Coupling the Constructive Cost Model (COCOMO) and the System Dynamics Model

of Software Project Management can provide a tool to study project management over the

life of a project, to use sensitivity analysis to enhance COCOMO's cost driver set, and to

utilize an automated optimization system for software cost estimation in a single or multi-

project environment. This new type of model creates a means to study the multi-project

environment and determine what the advantages and disadvantages are to sharing

resources between different software projects.

Several 'C' programs were developed, that when interfaced and coupled with the

system dynamic model, provide a tool to optimize cost estimates in a two project

environment. It also creates an environment to perform extensive sensitivity analysis for

the enhancement of COCOMO's cost driver set in the single and two project environment.

Accession For

NTTS GPA&-

}DT" T ... 71

D1: t , ; :I'ilii DII

TABLE OF CONTENTS

I.INTRODUCTION 1

A. BACKGROUND.................

B. OBJECTIVES......................3

C. THE RESEARCH QUESTION.................4

D. SCOPE........................4

E. METHODOLOGY.....................4

F. ORGANIZATION OF STUDY.................6

I.SYSTEM ARCHITECTURE..................7

A. INTRODUCTION....................7

B. A DYNAMIC SIMULATION MODEL OF SOFTWARE

DEVELOPMENT.....................7

C. COCOMO MODEL...................11

D. INTERFACING "C" PROGRAMS WITH DYNAMIC SIMUJ.ATION

MODEL.......................14

1. SINGLE PROJECT ENVIRONMENT............18

2. TWO PROJECT ENVIRONMENT............22

III. SYSTEM OPERATION....................28

A. BACKGROUND.....................28

B. SPECIAL FEATURES 28

C. GETTING STARTED................... 2

iv

D. GETTING THE SYSTEM READY FOR USE.........29

1. Installing the Software on Your Hard Disk . 29

2. Installation with Hercules Monochrome Graphics

Card......................30

E. OPERATING THE SYSTEM...............30

1. Operating the System from Diskette. 30

2. Operating the System from the Hard Disk .. 31

F. OPERATING IN THE SINGLE PROJECT ENVIRONMENT . 32

1. Enter New Project...............33

2. Load Project from Disk.............41

G. OPERATING SYSTEM IN TWO PROJECT ENVIRONMENT . . 44

H. RESULTS AND REPORTS................47

IV. TEST AND EVALUATION OF SYSTEM............49

A. PROJECT DEFINITION................49

1. Test1.....................50

a. Basic COCOMO................51

b. Intermediate COCOMO............53

2. Test2......................57

3. Test3......................58

4. Experiment...................62

* V. CONCLUSIONS AND RECOMMENDATIONS............69

A. CONCLUSIONS.....................69

B. RECOMMENDATIONS FOR FUTURE RESEARCH.........73

1. Refining the Current System..........73

2. Use of Current System for Sensitivity Analysis

Experiments..................74

3. Determine Real World Advantages.........74

APPENDIX A: MAIN.C.....................75

APPENDIX B: INPUT1.C...................77

APPENDIX C: OUTPUT1.C.................106

APPENDIX D: INPUT2.C...................109

APPENDIX E: OUTPUT2.C.................148

LIST OF REFERENCES....................163

INITIAL DISTRIBUTION LIST.................164

Vi

LIST 0OF TABLZS

TABLE 4-1: BASIC COCOMO EQUATIONS..............51

TABLE 4-2: INTERMEDIATE COCOMO EQUATIONS..........54

TABLE 4-3: STAFF SIZE VS. COIVIIUNICATION OVERHEAD . . . 59

vii

LIST OF FIGURES

Figure 2-1: Four Sub-systems of the Dynamic Simulation

Model 9

Figure 2-2: Complete System Architecture 17

Figure 2-3: Initialization of Programs Menu 18

Figure 2-4: Coupled Model Architecture for a Single

Project Environment 19

Figure 2-5: System Architecture for Two Project

Environment 23

Figure 3-1: Welcome Screen 31

Figure 3-2: Initialization of Programs Menu 32

Figure 3-3: Initial Menu for Single Project

Environment 33

Figure 3-4: Selection Menu for COCOMO Model 35

Figure 3-5: COCOMO Cost Driver Input Screen 36

Figure 3-6: Example of Cost Driver Menu 37

Figure 3-7: COCOMO MODE Selection Menu 38

Figure 3-8: COCOMO Input Display Screen 39

Figure 3-9: New Project Menu 40

Figure 3-10: Report Format Screen 40

Figure 3-11: Main Menu for Single Project Environment 41

Figure 3-12: Current List of Files Screen 42

Figure 3-13: Select COCOMO Model Menu 42

Figure 3-14: Saving Files Menu 43

viii

Figure 3-15: Main Menu for Two Project Environment 44

Figure 3-16: Control Variable Questions 46

Figure 4-1: Input Display Screen 50

Figure 4-2: Trend in Effort over a Series of

Iterations 65

Figure 4-3: Schedule Trends over a Series of

Iterations 65

Figure 4-4: Effort Trends over a Series of Iterations

with Different Start Dates 66

Figure 4-5: Schedule Trends over a Series of Iterations

with Different Start Dates 66

Figure 4-6: Error Rate Trends 67

Figure 4-7: Error Rate Trends with Different Start

Dates 67

ix

I. INTRODUCTION

A. BACKGROUND

Cost estimation of software is one of the few areas in the

computer industry that has not progressed with the rapid

technological advances and growth experienced by the remainder

of the computer industry. Although extensive studies have

been completed and many cost estimation models developed,

there is still no evidence that the software industry can

accurately estimate the cost of a software project. Cost

overruns, late deliveries, poor reliability, and user

dissatisfaction has created an atmosphere of distrust in cost

estimation models In a recent speech, for example, Air

Force General Bernard Randolph characterized software as the

"Achilles' heel of weapons development" and continued later

stating, "On software schedules, we've got a perfect record;

We haven't met one yet." (Kitfield, 1989, p. 29) A report from

the 101ST Congress summarized, "that in an increasingly

constrained budget environment greater controls must be

established to alleviate the continual cost overruns and

excessive cost growth of these systems."(Congress, 1989, pp.

1-2) In order to contend with these problems, cost estimation

studies were directed toward the understanding of the complete

software development process, which included many management

1

issues. Although some progress has been made in the

understanding of this development process, the problems still

tend to persist. Studies have discovered that this, so

called, "Software Monster" is as much a managerial problem as

a technical one (Schlender, 1989, p. 100) . Meanwhile, the

demand for more reliable and more sophisticated software

continues to escalate with the increased dependence of

computers in everyday life (Abdel-Hamid, 1989, p. 1426).

Coupling an algorithmic model, such as a Constructive Cost

Model (COCOMO), and a Systems Dynamics Simulation Model of

Software Project Management may enhance the ability to provide

better cost estimations. A coupled computer based modeling

system can be used to efficiently and effectively study the

effects of altering various objective and subjective

management controlled variables on the cost and schedule

aspects of a software project. The modeling system can also

be used to repeat the same project simulation many times while

adjusting different parameters in an effort to determine the

variables that are most sensitive to the cost and schedule of

a single project.

Many organizations today utilize a matrix organizational

structure. In this type of organizational structure many

resources are shared by several different projects. The

coupled modeling system can create a means to simulate two

projects in a shared resource environment that automatically

refines the cost and schedule estimates. It can also repeat

2

the simulation process many times while adjusting different

parameters not only to achieve optimization in estimation, but

also to determine the variables most sensitive to cost and

schedule estimates in a two project environment.

B. OBJECTIVES

Several models have been developed to provide cost

estimates for software development projects. The COCOMO model

has been one of the most widely studied and used models in

cost estimation. The System Dynamics Simulation Model of

software development has been developed to study the effects

of certain management policies on software project

development. These management polices are subjective in

nature and are difficult to define. The emphasis of this

thesis will focus on the development of a new kind of softwate

estimation model that combines an algorithmic model, COCOMO,

with a systems dynamic simulation model. It will initially

focus on single software development projects, but will also

include studies considering cost estimation in a two project

environment. Additionally, this thesis will investigate the

addition of management variables as a means to enrich the

current set of COCOMO cost drivers. The test cases presented

will be proofs to ensure proper operation of the interfaces

between models. The experiment presented will be that of

limiting one specific resource variable between the two

3

projects and observing the process of automatic refinement of

cost estimates over a series of iterations.

C. THE RESEARCH QUESTION

The primary research question of this thesis is to

determine the advantages of coupling COCOMO with a dynamic

simulation model of software development. The other important

question of this thesis is whether the combined model would

enhance our ability to do sensitivity analysis and to

determine what, if any, approach is best for optimizing cost

estimations in a two project environment.

D. SCOPE

The scope of this thesis is to analyze the usefulness of

the composite model concept, and to investigate the utility

gained from coupling these two models in both the single and

two project environments. The scope of this thesis is not,

however, to improve cost accuracy.

E. METHODOLOGY

This thesis follows a series of logical steps in the

development and testing of a coupled modeling system. The

initial phase consists of designing a small "C" test program

to determine the best possible interface between the program

and the simulation model. Once an interface is successful,

the second phase begins. It includes the development of a "C"

program which will operate as a front-end system for the

4

simulation model and provide the COCOMO cost estimations for

effort and schedule. After completion of the program and the

interface is successful, testing must occur. The testing

includes baseline tests of program algorithms to ensure the

data being passed between programs is accurate. This phase of

testing includes testing the Basic COCOMO Model, the

Intermediate COCOMO Model, and nominal productivity

calculations.

The last phase includes the programming and testing of two

additional "C" programs. The first program is very similar to

the program previously developed. It also includes the front-

end system and the COCOMO cost estimations for effort and

schedule. The difference between the programs is that the

program from the previous phase was developed for a single

project environment and the latter provides for the same

requirements in the two project environment. After successful

completion of this program, a back-end program will be

developed to evaluate the results, provide adjustments where

nece3sary, and create an automatic iterative loop process

which continually refines cost estimations.

The testing for this phase will include a simple test, as

above, to prove the accuracy of program algorithms, but will

also include an experiment. The experiment will consist of

several tests to determine the opportunity gained by creating

an iterative loop process for refinement of cost estimations

in a two project environment. In addition, it will also test

5

the ability of this type of modeling system to do extensive

sensitivity analysis by limiting certain shared variables and

observing the results under several different conditions.

F. ORGANIZATION OF STUDY

This chapter has discussed the general background and

themes which direct this study. The remaining chapters are

organized as follows. Chapter II discusses the architecture

of the system. This includes background discussions on the

dynamic simulation model, COCOMO and the design structure of

the integration between the two models. Chapter III describes

in-depth the operation of the system. Chapter IV discusses

the tests and experiments conducted in this thesis. The tests

will show the validity of the program algorithms and the

experiment will show the potential of using this coupled

modeling system. Chapter V discusses the conclusions and

recommendations attained from conducting this study.

6

II. SYSTEM ARCHITECTURE

A. INTRODUCTION

This system is a coupling of a series of "C" programs and

a dynamic simulation model to create an interactive, user-

friendly support tool for the purpose of studying and refining

cost estimation procedures while gaining a better

understanding of software development project management.

This chapter first discusses the background of the dynamic

simulation model and COCOMO. It then discusses, in detail,

the system integration between the two models.

B. A DYNAMIC SIMULATION MODEL OF SOFTWARE DEVZLOPMZNT

The Dynamic Simulation Model is part of an on going study

of software development project management dynamics. The

model focuses on four basic subsystems which integrate the

management process of software development as well as the

production-type functions that constitute the software

development life cycle (Abdel-Hamid, 1990, p. 21). The four

subsystems include: human resource management; software

production; controlling; and planning. The Dynamic Simulation

Model is unique in that it is able to integrate key management

related software development processes such as scheduling,

productivity, and staffing to derive implications and gain

7

knowledge about behavioral aspects of management in the

overall software development process. It is also unique in

its use of the feedback principles of system dynamics to

structure and clarify the complex web of dynamically

interacting variables. Figure 2-1 establishes the

interactions and relationships between each of the four

subsystems (Agan, 1990, p. 7).

The human resource management subsystem comprises the

hiring, training, assimilation, and transfer of the human

resource. In this subsystem, the work force is divided into

two types of employees, newly hired and experienced. Newly

added team members tend to be less productive than experienced

members. On the other hand, experienced members productivity

is reduced due to the training needs involved in assimilating

newly added members into the team. Employee turnover also

directly impacts project development. The larger the project

the greater the turnover rate. This corresponds with the

above productivity discussion of newly added members being

less productive. (Abdel-Hamid, 1990, p.22)

Figure 2-1 suggests "work force available" has a direct

bearing on the allocation of manpower among the different

software production activities in the Software Production

Subsystem. The primary software production activities are

development, quality assurance, rework and testing.

8

,- HumanSResource

Work
Prgesforce Work

Progrus , available force
t !/T' k neehuded

F-Soft-se m
production

dt te Tasks Scheduler/ wcompleted

atihControllg Effort Pic anning
remaining

Figure 2-1: Four Sub-systems of the Dynamic
Simulation Model

Quality assurance is used as a means of detecting errors

in development activities. Although some errors will elude

detection until the testing phase, errors detected through

quality assurance will be reworked. As progress is made, a

comparison of where the project is versus where it should be

is evaluated. This evaluation is a function of the control

activity in the Controlling Subsystem. Since software is an

intangible product during most of the development process and

there are no visible milestones to measure progress or

quality, the Controlling Subsystem contains some of the most

*difficult problems a manager must solve. Therefore, the

Controlling Subsystem possibly has the greatest impact on thiis

entire system. As depicted in Figure 2-1, the Controlling

Subsystem directly effects the Planning Subsystem in the

9

quantification of "effort remaining" which indirectly impacts

both "schedule" and "work force needed" to complete the

project. The "progress status" of the project reported back

to the human resource management subsystem directly effects

team productivity. In early stages of the project, team

members rely on the managers assessment of their overall

productivity as they are unable to perceive the productiveness

of the work force. Therefore, as the project nears

completion, the managers projected productivity gradually

ceases to influence the perceived productivity of the team as

it becomes a function of feedback determined by actual tasks

completed. (Abdel-Hamid, 1990, p. 23)

The Planning Subsystem is responsible for the initial

project estimates and, when necessary, the revised estimates

as each subsystem continues to effect the other until project

completion. For example, for a project perceived to be behind

schedule, a manager may hire additional employees, delay the

schedule, possibly a combination of the two, or do nothing

(Abdol-Hamid, 1990, p. 23).

The dynamic simulation environment of this model

concentrates on the managerial aspects of software development

and on the fundamental understanding of the software

development process.

10

C. COCOMO MODEL

The COnstructive COst MOdel or COCOMO is an algorithmic

model that is used to determine initial cost estimates in

software development effort and schedule. Initial cost

estimates of this model are a function of the estimated size

of the software product in source instructions. There are

three different versions of COCOMO which include Basic COCOMO,

Intermediate COCOMO, and Detailed COCOMO. Basic COCOMO is an

algorithmic model that is effective for quick and rough order

of magnitude estimates of software costs. However, its

accuracy is limited because it does not account for

differences in hardware constraints, personnel quality and

experience, use of modern tools and techniques, and other

project attributes known to have a significant impact on

software costs. (Boehm, 1981, p. 58)

The intermediate COCOMO model increases the accuracy of

basic COCOMO by incorporating 15 cost drivers into the effort

and schedule calculations. These 15 cost drivers are grouped

into four categories: software product attributes, computer

attributes, personnel attributes, and project attributes. The

cost drivers are listed by category below:

* Product -Attributes

- Required Software
- Reliability
- Database Size
- Product Complexity

11

* Computer Attributes

- Execution Time Constraint
- Main Storage Constraint
- Virtual Machine Volatility

- Computer Turnaround Time

" Personnel Attributes

- Analyst Capability
- Applications Experience
- Programmer Capability
- Virtual Machine Experience
- Programming Language Experience

* Project Attributes

- Modern Programming Practices
- Use of Software Tools
- Required Development Schedule

Each of these cost drivers has an associated multiplying

factor used in the algorithmic calculations to determine, with

more accuracy, the overall effort and schedule costs of the

software development project. (Boehm, 1981, pp. 114-117)

The detailed version of COCOMO employs a three level

hierarchical decomposition of the software product whose cost

is to be estimated (Boehm, 1981, p. 347). It also uses effort

multipliers to determine the phase distribution of effort over

the life cycle. This version of COCOMO did not lend itself to

this coupled modeling system and, therefore, was not utilized.

In the COCOMO environment there are three modes of

software development. They include the Organic Mode, the

Semidetached Mode, and the Embedded Mode. Distinguishing

between the modes is extremely important to prevent

12

overestimation or underestimation in the amount of effort

required for the project. (Boehm, 1984, p. 20)

The organic mode represents projects with relatively small

software teams who operate in a familiar, in-house

environment. The teams are comprised of people with extensive

experience in the organizations structure, in working with

related systems, and in understanding how the system will

contribute to the goals and objectives of the organization.

The Organic mode environment lends itself to a relatively

relaxed atmosphere that leads to higher productivity and

smaller diseconomy of scale on the project. (Boehm, 1981, p.

78)

The semidetached mode represents a project that falls

between the definition of the organic mode and the embedded

mode. The software project development teams are comprised of

a wide mixture of experienced and inexperienced people, some

of which understand how the system relates to the organization

and some that do not. (Boehm, 1981, p. 79)

The embedded mode represents a project which must operate

in a strongly coupled complex of hardware, software,

regulations and operational procedures. Initially, the team

consists of -a small group of analysts, normally from outside

the organization, who complete product design. Then, again

from outside the organization, a large group of programmers

are hired to complete the project. Because of rigid

requirements and the inability to make changes to these

13

requirements, the embedded mode environment tends to be less

productive and lead to greater diseconomies of scale. (Boehm,

1981, pp. 78-80)

D. INTERFACING "C" PROGRAMS WITH DYNAMIC SIMULATION MODEL

Interfacing between programs is accomplished through the

DOS operating system. DOS uses a series of system calls to

maneuver through the different processes within the batch

files. The DOS operating environment allows the system,

through the use of errorlevel calls and goto statements, to

execute and exit the different programs which are not

compatible due to software language limitations (Schildt,

1988, pp. 140-143).

Figure 2-2 represents a model of the total system

architecture which indicates the flows and controls of the

execution process of all the programs which makeup the coupled

model. The batch file, RUN.BAT is executed by typing RUN at

the DOS prompt and pressing enter. This batch file

initializes the start up of the coupled model. Once the

system is initialized, the user must select the project

environment in which to operate. The batch file RUN.BAT first

calls the "C" program called MAIN.EXE as shown in Figure 2-2.

It is a small program that allows user access into either the

single project or two project environment. Figure 2-2 clearly

illustrates the distinct paths of the two environments. After

the decision is made, the model automatically executes the

14

selected INPUT program. The INPUT program is used as a front-

end system for the dynamic simulation model and as an

algorithmic model to complete the COCOMO calculations.

*************************RUN. ***************

/* This is the main batch file which initiates the */
/* execution of the coupled modeling system. */

@ECHO OFF
del report.out
main
/* In the "C" language, the exit command with */
/* an associated number, such as exit(I), enables */
/* DOS's ERRORLEVEL command to accept the exit */
/* number, (1) in this case, and call the next */
/* appropriate program using a GOTO statement. */
/* Several examples of this are shown in RUN.BAT, */
/* the batch file displayed below. The remainder */
/* of the "C" programs all interface with the DOS */
/* batch environment in the same manner.

IF ERRORLEVEL 1 GOTO two
inputl /* if exit (0), then execute */
IF ERRORLEVEL 1 GOTO done
GOTO roll
:roll
call execl.bat /* single project environment */
out put 1
IF rRRORLEVEL 4 GOTO disp
IF ERRORLEVEL 3 GOTO prn
IF ERRORLEVEL 0 GOTO done
GOTO done
:two
input 2
IF ERRORLEVEL 1 GOTO done
GOTO run
:run
call exec2.bat /1 two project environment */
xF ERRORLEVEL 1 GOTO done
output2
IF ERRORLEVEL 4 GOTO disp
IF ERRORLEVEL 3 GOTO prn
IF ERRORLEVEL 1 GOTO run
IF IRRORLEVEL 0 GOTO done
:disp /* display on screen */
type report.out
GOTO done
:prn /* print results */
print report.out
GOTO done
done
REM Program operation is complete.

15

After the inputs and calculation are completed, the

program automatica'ly terminates, and the appropriate EXEC

batch file is called. The process of interfacing the program

to the batch file is discussed in the documentation portion of

the RUN.BAT source code displayed below and throughout the

source code of the actual programs included in the Appendices.

16

E

I-ii

Figure 2-2: Complete System Architecture

17

1. SINGLE PROJECT ENVIRONMENT

Figure 2-4 represents the processes and data flows

within the system architecture that occur in the single

project environment.

The single project environment is entered by user

selection from a menu which is displayed in Figure 2-3.

INITIALIZATION OF PROGRAMS
(Select one of the following)

1 - SINGLE Project Environment
2 - TWO Project Environment

Select environment you wish to use and press enter:

Figure 2-3: INITIALIZATION OF PROGRAMS MENU

Once selected, INPUT1.EXE, a "C" program designed to interface

with a single project environment version of the dynamic

simulation model, is executed. The INPUT1.EXE program enables

the user to utilize current parameters from a saved project,

change parameters from a previously saved project or

completely enter a new project. INPUT1.EXE has two basic

functions. The first is to complete COCOMO cost estimation

calculations from the input variables entered by the user.

The second is to provide a front end system that allows the

user to easily input or provide changes to the input variables

18

x

Uj P

Ix x

'UU

Figure 2-4: Coupled Model Architecture for a Single
Project Environment

19

of the dynamic simulation model. Once the inputs and

calculations are completed the entire list of variables are

saved to a file called SIMONE.DNX, which is displayed in the

input/output file below.

*******************D-* ************* ******* *

/* This an example of the output file created by */
/* INPUT1.ZXZ and is the input for the simulation. */

C RJBDSI=64000
C TOTMD1=4113.23
C TDZV1=302.60
C INUDST= 0.50
C ADMPPS= 1.00
C HIREDY=40.00
C AVEMPT-l000000.00
C TRPNHR- 0.20
c ASIMDY=80.00
T TNKRPK=25.00 23.86 21.59 15.90 13.60 12.50
T TPFMQA=0.150 0.150 0.150 0.150 0.150 0.150

0.150 0.150 0.150 0.150
C DKVPRT- 0.80
C DSIPTK=55.22

OUTFILE.DNX is a binary file which is also saved at

this point in the process. This file is utilized in

conjunction with OUTPUT1.EXE. This file passes COCOMO

estimated effort and schedule costs to the OUTPUT1.EXE program

for report processing. This file was developed to easily pass

variables directly from INPUT1.EXE to OUTPUT1.EXE while

keeping them-completely separate from the dynamic simulation

model. After the files are saved, INPUT1.EXE automatically

terminates and returns to the DOS environment to call

EXEC1.BAT which initiates the dynamic simulation environment

20

project. This batch file works identical to the main batch

file in regard to the interfacing between programs and

processes of the dynamic simulation model. The batch file is

shown below and is modeled as an insert in Figure 2-4.

/* This batch file represents the batch file that calls */
/* the simulation model for the single project environment. */

DYNEX SIMONE -d model .drs

IF ERRORLEVEL 4 GOTO ERROR
SMLT SIMONE -GO = -DTM =
REP SIMONE -T
GOTO EXIT
:ERROR
ECHO *** ERROR 1 ****
:EXIT

DYNEX.EXE, SMLT.EXE, and REP.EXE are executable

programs which are programmed in the dynamo language and must

be present in the default directory for the System Dynamics

Model to operate. The SIMONE.DRS file, displayed below, is

used by the dynamo report generator to write the required

output which will be displayed in SIMONE.OUT.

*************************SIMDNE**DRS**************************

/* This file works in conjunction with the dynex program */
/* and the dynamo report generator to produce the output */
/* file SIMONE.OUT. */

REPORT

FoRMAT-i"<,15>,16<",PICTURZ="ZZZZZZV.99"
-cimod (", Cl~e, "). "

FORNAT "I<,15>,16<",PICTURE="ZZZZZZV.99"
" time(",TIME,"}."

21

SIMONE.DNX, as discussed above and as shown in Figure

2-4, is the output file of INPUT1.EXE and contains all of the

input variables used by the simulation model. Figure 2-4 also

depl':ts the relationships of the primary components of the

dynamic simulation model and how they relate to both the

EXEC1.BAT and RUN.BAT batch files.

Upon completion of the dynamic simulation model and

EXEC1.BAT, the system again returns to the RUN.BAT batch file

where OUTPUT1.EXE is called. This program utilizes

information from OUTFILE.DNX and SIMONE.OUT to allow the user

the ability to print or display the comparisons between the

estimates and actual costs of effort and schedule. The

results are saved to a file called REPORT.OUT. This file

will remain resident on disk until the program is re-

initialized.

2. TWO PROJECT ENVIRONMENT

Figure 2-5 represents the processes and data flows

within the system architecture that occur in the two project

envizonment. The two project environment is entered by user

selection from a menu which is displayed after execution of

MAIN.EXE and is shown in Figure 2-4. Once selected,

INPUT2.EXE, a "C" program designed to interface with a two

project environment version of the dynamic simulation model,

is executed. The INPUT2.EXE program enables the user to

utilize current parameters from saved projects, change

22

X -

LU

a xB

4........

Figure 2-5: System Architecture for Two Project
Environment

23

parameters from previously saved projects or completely enter

new projects to complete two basic functions. The first is to

complete COCOMO cost estimation calculations from input

variables entered by the user for both projects, as discussed,

in the previous section. The second is to provide a front end

system that allows the user to easily input or provide changes

to the input variables for both projects in the dynamic

simulation model. Once the COCOMO calculations and inputs are

completed and the variables entered, the entire list of

variables are saved to a file called SIMTWO.DNX, which is

displayed in the input/output file below.

************************34fl. *NX***************************

/* This an *xale of the output file created by */
/* INPUT2.KXZ and is the input for the simulation. */

C RJBDSI (1)=64000
C RJBDSI(2)=64000
C TOTMI1(1) 3593
C TOTD1 (2) = 3593
C TDZV1(1)= 348
C TDKV1(2)n 348
C INUDST(1)= 0.50
C INUDST(2)- 0.50
C ADNPPS(1)- 1.00
c ADNaPS(2)- 1.00
C HIRZDY(1)=40.00
C HIRZDY(2)=40.00
C AVKIPT(1)=1000000.00
C AVKNPT(2)if1000000.00
C TRPIHR(1)= 0.20
C TRPNHR(2)= 0.20
C ASINY (1) -80.00
C ASIEY (2) =80.00
T TN3RPl-25.00 23.86 21.59 15.90 13.60 12.50
T TNKRP2-25.00 23.86 21.59 15.90 13.60 12.50
T TPFIQ1=0.150 0.150 0.150 0.150 0.150 0.150

0.150 0.150 0.150 0.150 0
T TPTMQ2=0.150 0.150 0.150 0.150 0.150 0.150

0.150 0.150 0.150 0.150 0
C DKVPRT(1)= 0.80
C DEVPRT(2) 0.80
C DSIPTK(1) -59.89

24

C DSIPTK(2)-59.89
C STRTDT(1)= 0.00
C STRTDT(2)= 0.00
C NCLTWF=1000000.00

* ** ******* * ****** ************ *** * *** *** **************

OUTFILE2.DNX is a binary file which is also saved at

this point in the process. This file is utilized in

conjunction with OUTPUT2.EXE. This file passes COCOMO

estimated effort and schedule costs to the OUTPUT2.EXE program

for report processing and iterative loop control. The file

was developed as a means to easily pass variables directly

from INPUT2.EXE to OUTPUT2.EXE while keeping them completely

separate from the dynamic simulation model process. After the

files are saved, INPUT2.EXE automatically terminates and

returns to the DOS environment to call EXEC2.BAT. This

initiates the dynamic simulation environment for two projects.

The batch file works identical to the main batch file and

EXEC1.BAT in regard to the interfacing between programs and

processes of the dynamic simulation model. EXEC2.BAT is

displayed below and is modeled as an insert in Figure 2-5.

/* This batch file represents the batch file that calls */
/* the simulation model for the two project environment. */

DYNEX SIWO -d model .drs
IT ERRORLEVEL 4 GOTO ERROR
SMLT SIMTWO -GO - -DTH =
REP SIMTNO -T
GOTO EXIT
:ERROR
ECHO *** ERROR 1 *
:EXIT

25

DYNEX.EXE, SMLT.EXE, and REP.EXE are executable

programs which are programmed in the dynamo language and must

be present in the defaalt directory for the System Dynamics

Model to operate. The SIMTWO.DRS file, displayed below is

used by the dynamo report generator to write the required

output which will be displayed in SIMTWO.OUT. SIMTWO.DNX, as

discussed above, is the output file of INPUT2.EXE and stores

all of the input variables used by the simulation model.

Figure 2-5 also depicts the relationships of the primary

components of the dynamic simulation model and how they relate

to both the EXEC2.BAT and RUN.BAT batch files. Upon

/* This file works in conjunction with the dynex program */
/* and the dynamo report generator to produce the output */
/* file SIMONZ.OUT. */

REPORT
TIMEAAXT IM,
FORMAT-"I<,15>,16<",PICTURK="ZZZZZZV.99"-CI= d(n, CMM (1),-n) .-
FORMATm"I<,15>,16<",PICTURZ="ZZZZZZV.99"
"cuiffnWI(", CMMdW(2),"n)."n
FORMAT="I<,I5>,I6<",PICTURZm"ZZZZZZV.99"

" time(",DURTN (1),") ."

FORMAT-l<,15>,16<",PICTURZ-"ZZZZZZV.99"
" time(",DRTN(2),")."

completion of the dynamic simulation model and EXEC2.BAT, the

system again- returns to the DOS environment where OUTPUT2.EXE

is called. This program utilizes information from

OUTFILE2.DNX and SIMTWO.OUT to create an iterative l:'op

environment.

26

Figure 2-5 shows the flow of the iterative loop

process with dotted lines. The basic theory behind this

process is to give the user the ability to decide on the

accuracy level and the number of iterations to run in order to

continually refine cost estimates. The iterative loop runs as

many times as the user desires or until the error rates are

equal to or less then those entered by the user. The error

rates are determined by using standard algorithms for finding

percent error (i.e., difference between estimated effort from

COCOMO and actual effort determined by the simulation model

divided by the actual effort). In addition to loop

limitation and error rate entries, the user may also wish to

adjust the actual effort and schedule values determined by the

simulation model prior to execution of the next loop. These

adjustments can be made to both schedule and effort values in

each of the two projects.

The error rates, loop limitations, and adjustment

factors give the user the flexibility to run the same projects

under many different conditions. This iterative loop process

provides the user with an automated tool for sensitivity

analysis to gain a better understanding of the software

development process and as a means to refine cost estimations.

As depicted in Figure 2-5, exiting this process either returns

you to the loop or to the report menu for displaying or

printing of results from the rEPORT.OUT file.

27

III. SYSTEM OPERATION

A. BACKGROUND

This system is a coupling of a series of "C" programs and

a dynamic simulation model to create an interactive, user-

friendly support tool for the purpose of studying and refining

cost estimation procedures while gaining a better

understanding of software development project management.

B. SPECIAL FEATURES

The following is a list of several special features and

considerations which were incorporated into the design and

development of this system.

" User Friendly: This system was designed for those who
have some experience in using COCOMO and the Dynamic
Simulation Model. Although the system is designed for
ease of use, the user must have a general understanding of
the different variables and their associated acronyms in
order to achieve effective and efficient data entry.

" Menu Driven: This system uses a menu-driven structure
that enables the user to recognize the options available
at each level. The highest level menu is the program menu
to select a specific environment (i.e., a one or two
project environment). Once an environment is selected,
the associated function menu appears. This menu enables
the user to enter new projects, read existing problems
from disk, or exit the program. Several options also have
associated sub-menus to help direct the user.

" Easy Data Entry and Modification: This system enables the
user to enter data from the keyboard or read stored data
from disk. Entry formats are designed for easy entry or
modification of input variables.

28

C. GETTING STARTED

The required and optional hardware, software and

peripherals necessary to operate this coupled modeling system

include the following:

* Required Equipment: This coupled modeling system is
designed to run on an IBM personal computer or true IBM PC
compatible computer with at least 256K bytes of memory; at
least one high density disk drive; and DOS 3.3 version or
higher.

* Optional Equipment: This model supports the IBM enhanced
graphizs card, IBM color graphics card, IBM VGA card, and
Hercules monochrome graphics card. It supports the IBM
proprinter and true compatiables. A hard disk drive would
improve the overall operation of the system. A math
coprocessor is supported for the dynamic simulation model
but is not required.

D. GETTING THE SYSTEM READY FOR USE

For ease of use, this system is contained on a single high

density floppy diskette. This enables complete operation from

almost any floppy drive system. For faster processing of the

system, it is recommended to load and operate the system from

the hard disk. This system automatically uses the default

printer, unless you redirect the output, at the time of

printing, to another printer.

1. Installing the Software on Your Hard Disk

If you are familiar with a utility tool, you may wish

to create a new directory and copy all files and programs on

the diskette to the new directory. Otherwise, continue with

the following general procedures.

29

a. When your screen displays the DOS prompt of the
drive you wish to install the program, make a sub-
directory using the DOS command 'MKDIR' . For
example the sub-directory may be called DSMI for
Dynamic Simulation Model Interface.

b. Go to the new sub-directory using the DOS command
'CD'. Then copy all files and programs from the
diskette to this new sub-directory using the
'COPY' command.

2. Installation with Hercules Monochrome Graphics Card

a. Ensure the three files "INTlO.COM",
"HARDCOPY.COM",and "PRINTER.DEF" are copied from
the diskette to your hard disk root directory.

b. Add the line "INT10" to your AUTOEXEC.BAT file.

c. Add the line "HARDCOPY" to your AUTOEXEC.BAT file.

E. OPERATING THE SYSTEM

Operating the system can be accomplished either by running

the system from the high density floppy diskette or the hard

disk. Standard procedures for system operation a:e as

follows:

1. Operating the System from Diskette

The following is a list of steps required to operate

the model from a diskette. This system can run on a high

density floppy drive system.

a. Turn computer on if not already on.

b. Insert diskette into disk drive end change the
default drive to the disk drive which contains the
diskette (i.e., if default drive is C then change
it so DOS prompt reads, for example, 'A>').

c. At the prompt type 'RUN' and press the ENTER key.
The system will be loaded and the initial m-enu
will be displayed. Figure 3-1 shows the
initialization menu.

30

2. Operating the System from the Hard Disk

After the computer is turned on, the interface of the

software is designed as a hierarchy of menus and a series of

data entry points. To execute the model, proceed with the

following steps. At the prompt of the sub-directory you

created on the hard drive, type the command 'RUN' and press

enter. This will display the welcome screen shown in Figure

3-1. Press any key to continue to the environment selection

Welcome to the coupling of
COCOMO and a SYSTEMS DYNAMICS MODEL

************* **** ******************* *********

Programmed by Richard W. Smith & Tarek K. Abdel-Hamid

Press [ANY KEY] to continue...

Figure 3-1: Welcome Screen

window similar to the one displayed in Figure 3-2. Ycur

selection will determine which environment you will operate

in. Once selected you may not traverse from the single

project environment to the two project environment nor vice

versa. As mentioned above, this system provides a hierarchy

of menus. Thus, when you make a menu selection, you move to

a new menu either up or down the hierarchy of menus.

31

Therefore, whichever environment is chosen, the appropriate

initial menu will be displayed similar to the one in

Figure 3-3.

INITIALIZATION OF PROGRAMS
(Select one of the following)

1 - SINGLE Project Environmeit
2 - TWO Project Environment

Select environment you wish to use and press enter:

Figure 3-2: INITIALIZATION OF PROGRAMS MENU

F. OPERATING IN THE SINGLE PROJECT ENVIRONMENT

The single project environment is available to observe how

a single project is affected by software development project

management over the life of the project. It can be also used

as a tool for sensitivity analysis in studies concerning the

effects certain variables have on the development cycle. The

baseline data for this model is stored in a data file called

BASE.PRF, and provides the values for the SIMONE.DNX input

file shown on page 23. Assuming that the COCOMO estimates are

accurate, the dynamic simulation model was adjusted, using

baseline data, for the purpose of achieving an error rate of

less than one percent between the initial cost estimates from

COCOMO and the actual results from the simulation model. When

32

achieved, it can be assumed that the simulation model reflects

the management policies of a particular organization (i.e.,

hiring and firing, turnover rates, training delays, etc.).

Figure 3-3 represents the initial menu in the single

project environment. As shown, there are three choices: load

a previously saved project, enter a new project, or exit the

program. These three options are discussed in detail in the

following sections.

INITIAL MENU

1 - LOAD project from disk.
2 - NEW project.
3 - EXIT Program.

Select with number or cursor and press [ENTER] ...

Figure 3-3: INITIAL MENU for Single Project Environment

1. Enter New Project

If you select a new project, a basic instruction page,

shown below, is displayed. Selecting any key will allow you

to continue.

33

******************* IMPORTANT ********************

In order to load a NEW project you must enter
input data for both COCOMO and the Dynamic Simulation.
There are two forms on which all data must be entered.
Please enter the data as accurately as possible.

Press [ANY KEY] to continue...

The next step is the data entry phase of the program.

A series of variables will be displayed one by one. The

program is designed to accept floating point entries for each

variable, but it will accept integers and automatically

convert them to floats. The system is designed to accept only

numbers and a single decimal point for each entry. Other

entries could cause the system to malfunction. Recovery from

a malfunction is to start over using Ctl-Alt-Del. This

shortcoming will be remedied in the next version. If you

enter a number incorrectly, continue with the entry process

until all the entries are made. You will have the opportunity

to re-enter variables in a later step.

There are two entries that are initially made on the

COCOMO input page: the size of the project and the name of

the file you will store the data. You must enter a file name

of your choice with a maximum of eight characters, with the

first character being a letter. Do not use a period and

extension in your file name. The system automatically adds

34

the extension ".PRF" to your data file storing the project

profile.

The pop-up menu for selecting the basic or

intermediate COCOMO Model is displayed in Figure 3-4.

Selecting the Basic model initiates the mode selection menu

for display and is described below. Selecting the

COCOMO MODEL
ESC - EXIT

1 - Basic COCOMO Model
2 - Intermediate COCOMO Model

Select the model you wish to use and press enter:

Figure 3-4: Selection Menu for COCOMO Model

intermediate model initiates the screen shown below in Figure

3-5.

This screen is the COCOMO Cost Driver input screen.

There are fifteen cost drivers associated with the COCOMO

model. They are displayed as acronyms and are all initialized

to 1.00. You may leave the cost drivers as they are or change

them to the appropriate value. Figure 3-5 shows three

different cost drivers that have already been modified. To

change the value of a cost driver, you enter the number of the

cost driver you wish to change and press enter. A pop-up

menu, like the one shown below in Figure 3-6, will be

35

displayed with all of the levels identified with that

particular cost driver (i.e., very high, high, nominal, low

etc.) and the associated values available to choose from.

Select the value or level you desire and press enter. This

returns you to the previous screen, similar to Figure 3-5,

with the new value displayed.

******** ** ***** *** **** * ***************

INTEPMEDIATE LEVEL COCOMO MODEL INPUTS
for BASE.PRF

* ************************** * ***** *******

1. RELY: 0.75
2. DATA: 1.00
3. CPLX: 1.00
4. TIME: 1.00
5. STOR: 1.06
6. VIRT: 1.00
7. TURN: 1.00
8. ACAP: 1.00
9. AEXP: 1.00

10. PCAP: 1.00
11. VEXP: 1.00
12. LEXP: 1.00
13. MODP: 1.00
14. TOOL: 1.00
15. SCED: 1.08

16. Press [16 or 0] when entries are complete.

Select Cost Driver and press [Enter]:

Figure 3-5: COCOMO Cost Driver Input Screen

Again you may change as many cost drivers as you wish.

Selecting number 16 and pressing return exits you from this

screen and displays the mode selection pop-up menu.

36

The mode selection menu, shown in Figure 3-7, enables

you to select the organic mode, the semi-detached mode, or the

embedded mode. Whichever mode is selected, the appropriate

COCOMO and nominal productivity calculations are completed,

and the input display screen is displayed. This screen, shown

in Figure 3-8, enables you to display and edit the simulation

** ** ***** ** ******* *** ****** ************* ****

INTERMEDIATE LEVEL COCOMO MODEL INPUTS
for BASE.DAT

RELY(Required software reliability)
ESC - EXIT

1 - Very Low; 0.75
2 - Low; 0.88
3 - Nominal; 1.00
4 - High; 1.15
5 - Very High; 1.40

13. MODP: 1.00
14. TOOL: 1.00
15. SCED: 1.00

16. Press (16 or 0] when entries are complete.

Select Cost Driver and press [Enter]: 1

Figure 3-6: Example of Cost Driver Menu

37

COCOMO MODE SELECTION
ESC - EXIT

1 - Organic
2 - Semi-detached
3 - Embedded

Select the appropriate mode and press enter:

Figure 3-7: COCOMO MODE Selection Menu

model inputs as well as the project size inputs required by

COCOMO. By selecting the number of the variable you desire to

change and pressing enter, you may now edit any previously

entered variable. A single line display will appear on the

screen using the full name of the variable instead of the

acronym displayed on the previous screen. Enter the new float

cr integer value and press enter. This returns you back to

the full screen shown above. There is no limit on the number

of changes or updates you wish to make. When all of the

variable values are correct, type 12 and press enter to

continue.

After exiting the display/edit screen, the program

returns to the Select New Project Menu, as shown in Figure

3-9. You may select Display/Edit to review or edit the new

project as described above, Run Dynamic Simulation, or Quit

menu and return to the Initial Menu. The Run Dynamic

Simulation selection initiates the execution of the dynamic

38

MODEL INPUTS for BASE.PRF
Organic Mode

************ * ******** * * ********

1. INUDST: 0.500 8. (1) TPFMQA(1]: 0.150
2. ADMPPS: 1.000 (2) TPFMQA[2]: 0.150
3. HIREDY: 40.000 (3) TPFMQA[3]: 0.150
4. AVEMPT: 1000000.000 (4) TPFMQA[4]: 0.150
5. TRPNHR: 0.200 (5) TPFMQA[5]: 0.150
6. ASIMDY: 80.000 (6) TPFMQA[6]: 0.150
7. (1) TNERPK[1]: 25.000 (7) TPFMQA[7]: 0.150

(2) TNERPK[2] : 23.860 (8) TPFMQA[8] : 0.150
(3) TNERPK[3]: 21.590 (9) TPFMQA[9]: 0.150
(4) TNERPK[4]: 15.900 (10) TPFMQA[10]: 0.150
(5) TNERPK[5]: 13.600 9. DEVPRT: 0.800
(6) TNERPK[6]: 12.500 10. DSIPTK: 59.894

11. Size of project (KDSI): 64

12. EXIT and SAVE changes.

Enter number of parameter you wish to change:

Figure 3-8: COCOMO Input Display Screen

simulation model. The type equipment you are utilizing

determines how long the simulation will take to run. The

simulation can take from approximately one minute, with a PC

equipped with a co-processor, to approximately 15 minutes,

with a PC riot equipped with a co-processor. Once running, the

only way to exit from the simulation model is to press CTRL-

Break.

After the simulation model has run to completion, an

Output Selection menu is generated. You may select to display

39

NEW PROJECT MENU

1 - Display/Edit.
2 - RUN Dynamic Simulation.
3 - QUIT menu.

Select with number or cursor and press [ENTER].

Figure 3-9: NEW PROJECT MENU

the results on screen, print the results, or exit the program

as shown in Figure 3-10. The results will remain resident in

the REPORT.OUT file until the program is run again.

Therefore, if you select exit you still have access to the

results. Selecting Display scrolls the results on to the

screen. Selecting Print displays a request for the printer

you wish to utilize. Either enter the printer or press return

to print the results on your default printer.

REPORT FORMAT CHOICE

1 - Display results
2 - Print results
3 - Exit

Enter one of the above:

Figure 3-10: REPORT FORMAT SCREEN

40

2. Load Project from Disk

If you select Load project from disk, the main menu

will be displayed, as shown in Figure 3-11. The Main menu

gives you four selections to choose from. These include, List

projects on disk, Select desired project, Run Dynamic

Simulation, or Quit menu. Selecting List will display all of

the project data profiles that have been previously saved in

the current directory. At the bottom of the list, where

requested, enter the file name of the project data profile you

MAIN MENU

1 - LIST projects on disk.
2 - SELECT desired project.
3 - RUN Dynamic Simulation.
4 - QUIT menu.

Select with number or cursor and press [ENTERS...

Figure 3-11: MAIN MENU for Single Project Environment

wish to utilize. An example of this screen is displayed below

in Figure 3-12.

The display edit screen will automatically be

displayed next. The screen is shown in Figure 3-8. You nay

edit the data as described above or continue using the

resident data. If the data profile was saved in the

41

intermediate COCOMO model, the Cost Driver Input screen will

be automatically displayed. This screen, previously shown in

Figure 3-5, may also be updated as previously discussed.

Data file listing:

BASE.PRF
HALF.PRF

:> Enter project filename:

Figure 3-12: Current List of Files Screen

After either one or both of these screens have been

displayed, the Select Current data profile for COCOMO menu is

displayed. This menu, shown in Figure 3-13, allows you to

select either the Basic or Intermediate model for COCOMO

calculations. This flexibility allows the user to switch

between COCOMO models no matter what profile had been

previously saved.

Current data file is for the Basic COCOMO
(Select one of the following)

1 - CONTINUE Basic COCOMO Model
2 - Intermediate COCOMO Model

Select the model you wish to use and press enter

Figure 3-13: Select COCOMO Model Menu

42

You may also change the mode, as discussed above,

using the COCOMO Mode Selection menu, previously shown in

Figure 3-6, which is displayed next in this part of the menu

hierarchy.

The next menu, Figure 3-14, is the Saving Files menu.

You can save changes to a datafile under a new name, which

ensures the original data remains unchanged, or you may save

changes under the same name for updates to the original

datafile. After completion of this step, you return to the

main menu where you may restart the same process again or quit

the menu.

SAVING FILES

(Select one of the following)

1 - SAVE changes under Same Name
2 - SAVE changes under New Name

Select the model you wish to use and press enter:

Figure 3-14: SAVING FILES Menu

Selecting SELECT Desired Project displays a single

line request for a datafile input. This eliminates the need

to display the list described above.

The Run Dynamic Simulation selection initiates the

dynamic simulation model for the single project environment.

43

There is no user inttzrface during the simulation, but as shown

in Figure 3-10 above, the simulation concludes with a screen

requesting the type of output you would like. Procedures for

output are also discussed above.

G. OPERATING SYSTEM IN TWO PROJECT ENVIRONMENT

The two project environment menu hierarchy is almost

identical to the single project environment. The basic

difference between the two environment menu structures is that

you must enter data for two projects instea& of one. The

repetitiveness of the menu hierarchy is to provide consister.cy

and ease of use for the user. For example, the Main Menu for

the Two Project Environment, shown in Figure 3-15, gives you

four possible selections to choose from. They include, Select

Project 1 from disk, Select Project 2 from disk, Run Dynamic

Simulation Model, or Quit menu. For both project selections,

MAIN MENU

1 - SELECT Project 1 from disk.
2 - SELECT Project 2 from disk.
3 - RUN Dynamic Simulation.
4 - QUIT menu.

Select with number or cursor and press [ENTER]...

Figure 3-15: MAIN MENU for Two Project Environment

data file profiles are listed, and then followed by a request

for the file you wish to use. The program will not allow you

44

to select Run simulation Model until you have entered both

projects as shown below. This is also true if you were

You have not selected Project 1 or Project 2.
Both projects must be selected to run simulation.

Press any key to continue

entering new projects. However, the menu structure does allow

you to select a project from disk and then go back and enter

the other project as new.

The main difference between the two environments is

demonstrated when the Run Simulation is selected. In the

single project environment, the simulation model is

immediately initiated. In the two project environment, there

is a series of questions that must be answered prior to the

initiation of the simulation model. These questions are shown

in Figure 3-16.

This part of the model allows the user to make adjustments

to the actual model process. In the two project environment,

an iterative loop is built into the model structure which

automatically updates the actual results of the simulation

model into new estimates. The system then reruns the

simulation process with the new estimates. Without knowing

how this automatic process will affect certain variables in

the simulation, especially regarding productivity, adjustment

factors have been included to allow the user the ability to

input increased percentages as safety factors or input reduced

45

The following entries are percentages used to prevent the model
from building too much slack into the effort variable in the project.
In essence these factors simulate the managers responsibility not to
let the productivity lag.

Enter the Effort adjustment factor in project 1 as a percent: 1

Enter the Effort adjustment factor in project 2 as a percent: 1

Enter the Schedule adjustment factor in project 1 as a percent: 1

Enter the Schedule adjustment factor in project 2 as a percent: 1

The following entries allow you to choose the accuracy level and

limit the number of loops the model will run before completion.

Enter the accuracy level for Effort as a percent: .01

Enter the accuracy level for Schedule as a percent: .01

Enter the limit of the maximum number of loops the model will do: 2

Figure 3-16: Control Variable Questions

percentages to prevent the system from reducing productivity

in areas where there should be little change. If you wish to

run the simulation in a nominal mode, or without adjustment,

enter a 1.0 for each of the four adjustment factors. Entering

a 1.0 is equivalent to running the model at a 100%, entering

.95 is equivalent to running the model at 95%, and entering

1.1 is equivalent to running the model at 110%. The above

percentages refer to the percent of the effort or schedule

estimates which will be entered into the simulation during the

iterative loop process. In the nominal mode, the output or

actual results of the simulation is used to update the

46

productivity and as new estimates to be re-entered into the

simulation model for the next iteration. The other three

entries refer to the accuracy of the results.

Two entries request the error rates of the effort and

schedule. This is a calculation of the percent difference

between the estimates and the actual results. For example, if

you enter a 0.05 for the effort error rate input, the

iterative loop will continue re-running the model until the

estimated effort going into the simulation model and the

actual effort result from the model has an error rate of less

than or equal to 0.05. Error rate is the difference between

the estimated cost and the actual cost divided by the actual

cost. The last entry allows the user to limit the number of

loops the model will run. This is necessary if the error

rates entered by you are not achieved by the model. The

limitation for the number of iterations will prevent an

endless loop environment.

H. RESULTS AND REPORTS

The results of this model display the estimated and actual

values of effort, schedule, and nominal productivity. The

effort and schedule relationships are represented by error

rate calculations. In the single project environment there is

one line of data in the output, as shown below.

47

Estimated Actual Percent Estimated Actual Percent

man-days man-days Error Schedule Schedule Error

4113.13 4108.86 0.00 301.60 305.00 0.01

* This data is available in REPORT.OUT ****
**** Each time the model is run REPORT.OUT will change ****

Single Project Environment

In the two project environment, after each iterative loop

cycle, the output consists of two lines of data, one for each

project. A single iteration output is shown below. The

results of each run are stored in to a file called REPORT.OUT.

The results in this file remain memory resident only until the

model is re-initiated using the RUN command from the DOS

prompt.

PERCENT PERCENT PRODUCTIVITY

TOTMDI CUMI1 ERROR TDEVI TIME1 ERROR OLD NEW

3593 3591 0.00 348 348 0.00 59.89 59.92

PERCENT PERCENT PRODUCTIVITY

TOTMD2 CUMMD2 ERROR TDEV2 TIME2 ERROR OLD NEW

3593 3591 0.00 348 348 0.00 59.89 59.92

*** This data is available in REPORT.OUT *
**** Each time the model is run REPORT.OUT will change ****

Two Project Environment

48

IV. TEST AND EVALUATION OF SYSTEM

A. PROJECT DEFINITION

This chapter will provide a description of the algorithms

used in determining the COCOMO estimations and the nominal

productivity. It will also compare the results of baseline

data used by the model with the results of the COCOMO

calculations using long hand methodology. This combined model

was developed as a tool to ai" in the learning process of

software development project management. The coupling of

these different models and programs has created an environment

for an effective and efficient way to study a project over

time with the ability to adjust certain variables and conduct

sensitivity analysis in determining the variables which are

most sensitive to the overall project. The remainder of this

chapter will look at two test cases and an experiment to

ensure that the calculations in the front-end programs are

accurate, to illustrate an example of sensitivity analysis,

and to examine an example of the two project environment

iterative loop process. All of the following tests and

examples were based on data provided in the book by Abdel-

Hamid and Madnick (1991).

49

1. Test 1

The following test was run with baseline data to prove

the accuracy of the front-end portion of this model in the

single project environment. The data used for this test is

displayed in the input display screen, shown in Figure 4-1.

MODEL INPUTS for BASE.PRF
Organic Mode

*** ***********************************

1. INUDST: 0.500 8. (1) TPFMQA[1]: 0.150
2. ADMPPS: 1.000 (2) TPrMQA[2]: 0.150
3. HIREDY: 40.000 (3) TPFMQA[3]: 0.150
4. AVEMPT: 1000000.000 (4) TPFMQA[4]: 0.150
5. TRPNHR: 0.200 (5) TPFMQA[5]: 0.150
6. ASIMDY: 80.000 (6) TPFMQA[6]: 0.150
7. (1) TNERPK[1]: 25.000 (7) TPFMQA[7]: 0.150

(2) TNERPK[2]: 23.860 (8) TPIMQA[8]: 0.150
(3) TNZRPK[3]: 21.590 (9) TPFMQA[9]: 0.150
(4) TNERPK[4]: 15.900 (10) TPFMQA[10J: 0.150
(5) TNZERPK[5]: 13.600 9. DEVPRT: 0.800
(6) TNERPK[6]: 12.500 10. DSIPTK: 59.894

11. Size of project (KDSI): 64

12. EXIT and SAVE changes.

Enter number of parameter you wish to change:

Figure 4-1: Input Display Screen

Most of the variables are direct inputs to the simulation and

calculations are not required. The COCOMO calculations vary

in nature between the basic and intermediate models. There

will be one example of each in test one.

50

a. Baaic COCOMO

Basic COCOMO uses a simple algorithmic methodology

to determine the effort and schedule estimations for project

development. There are several inputs necessary to accomplish

this. The first is the size entry, which is inputted as

thousand decision source instruction, KDSI. The other

necessary input is a choice between the different modes of

COCOMO: organic, semi-detached, and embedded. Each mode has

its own series of equations for estimation calculations.

Although the organic mode was used in this test, all of the

equations for the different modes are displayed in Table 4-1

below.

The first equation uses KDSI to calculate the

estimated effo-t variable. The second equation then uses

TABLE 4-1: BASIC COCOMO EQUATIONS

Basic COCOMO Equations

MOde Effon Schedule

Omnic MM - 2.4(KOSI)' TDEV - 2.5(MM)4 n

Semideted MM - 3.OKDSI)'" TDEV - 2.5(MM)'*

Emtbdded MM - 3.8(KDSIJ EV - 2.5rMM) ° =

51

the effort variable to determine estimated schedule. The

equations from Table 4-1 above represent results calculated in

man-months for effort and months for schedule. In the

simulation model, the results are calculated in man-days for

effort and days for schedule. The conversion to man-days is

completed by multiplying man-months by 19, the standard number

of actual workdays in a month (Boehm, 1981). The schedule

estimation must be calculated using man-months for effort to

determine the number of months and then multiply the months by

19. The equations below depict an example of the COCOMO long

hand calculation results utilizing the baseline data.

The printout below, REPORT.OUT, shows a typical

output from the single project environment. Estimated man-

Example 1: Basic COCCMO

MD - 2.4(64)(X 19

- 189.1 X 19

- 3593

TDEV - 2.5(189.1f" X 19

- 18.3 X 19
=348

days is the value calculated using the COCOMO algorithms for

effort necessary to complete the project. The actual man-days

is the value calculated by the dynamic simulation model. This

value represents what the actual effort would be to complete

52

the project after all of the project management policies were

incorporated into the COCOMO estimate. Estimated Schedule is

the value calculated using the COCOMO algorithms for the time

in days it takes to complete the project. The actual schedule

is the value calculated by the dynamic simulation model. This

value represents the actual time it would take to complete the

Estimated Actual Percent Estimated Actual Percent

man-days man-days Error Schedule Schedule Error

3592.97 3590.89 0.00 348.21 349.00 0.00

**** This data is available in REPORT.OUT ****
**** Each time the model is run REPORT.OUT will change ****

project after all of the project management policies were

incorporated into the COCOMO estimate.

Comparing the long hand calculations above with the

results generated by the combined model in REPORT.OUT proves

that the algorithms within the model provide the simulation

with the correct estimates.

b. Intermediate COCOMO

The intermediate model works on the same general

principles as the basic model. The equations for the schedule

calculations are identical. The differences in the two models

are reflected in the differences between the equations for

53

effort estimation. First, the coefficients are different.

The coefficients in the intermediate model must account for

the aggregate effect of the effort multipliers (Boehm, 1981,

p. 117). There are 15 effort multipliers or cost drivers

which are multiplied by one another to determine the effort

adjustment factor (EAF). The Intermediate COCOMO equations

are displayed in Table 4-2.

Chapter III described how the values for each cost

driver is reached. The EAF is incorporated into the effort

equation through direct multiplication. The equations below

show an example of how EAF is calculated and applied to the

effort equation in the intermediate COCOMO model.

TABLE 4-2: INTERMEDIATE COCOMO EQUATIONS

Inurmvdlte COCOMO Equatlons

Mode Effort Schedule

OrWnlc MM - 3.2(KDSI) 'x EAF TDEV - 2.5(MM)*

SOfIdhed MM - 3.0(KDSI)" ' x EAF TDEV - 2.5(MM) QM

Embedded MM - 2.6(KDSI)'x EAF TDEV - 2.5(MM) ° '

EAF- Effort A*sment Fectr (CD * CD * CD3 CD,,.)
where CDIs oneof 15 Cost Drivers

54

The cost drivers tend to effect the overall effort

cost the same (i.e., the cost either increases or decrease as

a cost driver rating goes from very low to very high) . For

example, if you rate the software reliability of a project

Example 2: Intermediate COCOMO
EAF - 0.75 x 1.06 x 1.08 x 1.00 x 1.00 , 0.858W

MD - 3.2(64)05 X 19 X 0.8586
- 252.1 X 19 X 0.8586
= 4113

MM - 252.1 X 0 -* . 200.4

TDEV - 2.5(200.4) ° 3 X 19 X 0.85
- 18.7 X 19X0.85
- 302

very low it will cut the effort cost by 25%, but if you rate

the programmers capability very low it will increase the cost

of the project by 42%. This is true for all the cost drivers

except for the required development schedule cost driver. As

the rating goes from low to high, the effort multiplier

decreases until the rating becomes nominal (1.00), and it

increases as the ratings become higher. Intuitively, this is

true because it will take more effort to either compress or

expand the work schedule. The schedule cost driver does not

affect the algorithm for determining the effort but does

affect the algorithm to determine schedule. If you increase

the effort by compressing or expanding the schedule and use

55

that calculated value of effort in the schedule equation, the

schedule will always increase in time. This is not true if

you have increased effort to compress the schedule.

Therefore, to calculate the schedule you must divide the

effort by the schedule cost driver (also divide by 19 if

working in man-days), and insert the adjusted effort in the

schedule equation. Then multiply that number by the

associated percentage for each rating level. For example, the

effort multiplier for low is 1.08 and its associated

percentage 85%. Multiplying by .85 would then account for a

15% compression in schedule. You must also multiply by 19 to

determine schedule in days. The equations in the above

example represent long hand calculation results using

intermediate COCOMO. Comparing these results to those shown

from the computer results in REPORT.OUT below, proves that the

intermediate COCOMO algorithms within the model provide the

simulation with correct and accurate estimates.

Estimated Actual Percent Estimated Actual Percent

man-days man-days Error Schedule Schedule Error

4113.13 4108.86 0.00 301.60 305.00 0.01

*** This data is available in REPORT.OUT ***
**** Each time the model is run REPORT.OUT will change ****

56

2. Test 2

The following test was run with baseline data to prove

the accuracy of the front-end portion of this model in the two

project environment. The data used for this test is displayed

in Figure 4-1 and is the same data used in the previous test.

As in the first test, most of the variables are direct inputs

to the simulation and calculations are not required. This

test for the two project environment was conducted using the

same input data for both projects. The projects were also

treated as independent projects using Basic COCOMO. With no

interaction between the projects, the results of each project

in this test should have been identical with the test results

from the project run in the single project environment.

Comparing the results from the equations in Example 1 above to

those shown from the computer results in REPORT.OUT below,

proves that the COCOMO algorithms within the model provide the

simulation with correct and accurate estimates.

PERCENT PERCZENT PRODUCTIVITY

TOTMDl CUMID ERROR TDEVl TIMEl ERROR OLD NEW

3593 3591 0.00 348 348 0.00 59.89 59.92

PERCENT PERCENT PRODUCTIVITY
TOTMD2 CUNMD2 ERROR TDEV2 TIME2 ERROR OLD NEW

3593 3591 0.00 348 348 0.00 59.89 59.92

*** This data is available in REPORT.OUT *****
**** Each time the model is run REPORT.OUT will change ****

57

3. Test 3

The following test was run with baseline data to prove

the accuracy of the nominal productivity algorithms for input

to the simulatiQn model within the front-end portion of this

model. This test was run in conjunction with Test 2. The

results for nominal productivity are displayed as part of the

output data in the REPORT.OUT file shown above.

There were two sets of algorithmic calculations that

required testing. The first part of the test was to prove

that the initial algorithms were correct, and the second part

of the test was to prove that the nominal productivity

dynamically updates as the variables associated with it are

updated. The following set of equations are required to

determine nominal productivity:

Nominal Productivity Equations

DP - (1 - (%MDT + %MDQA + %MDR)) x MD

ADP - Acouul Drvalvpnent Produci~ty ADP-' Size(LOC)
OP- Dvlopfmt Pmduc vty D- MD
NP - Nomrinal Productivity
MD- Mana-days MD/19
0-MO - Oevekpnl Man-days Staff Size -

%MDT- % MO for Test TDEVI19
%MD A --% MD for QA
%MOR - % MO for Rewrk~ Sfaff Size Is enteMed Into Table 4-2 to get

Commuicatlon OvelWed

ADP
NP-

0.6 x (1 -Comm overhesd)

58

Table 4-3, displayed below, is necessary to retrieve

the value for communication overhead from the average staff

size input. In many cases, you must interpolate for proper

communication overhead values.

TABLE 4-3: STAFF SIZE VS.
COMMUNICATION OVERHEAD

Communication
Staff Size Overhead

0 0
5 0.015
10 0.06
15 0.135
n0.24
25 0.375
30 0.54

NOME 30 mg-- gwroatn

Nominal productivity is affected by many variables.

The first variables that you need are inputs for percent of

man-days for tests, percent of man-days for quality assurance

(QA) and percent of man-days for rework. All three of these

variables are critical to the success of the project, but are

not considered an input to the process.

The development of software systems involves a series of
production activities where opportunities for injection of
human falliabilities are enormous. Errors may begin to
occur at the very inception of the process where the
objectives... may be erroneously or imperfectly specified,
as well as [errors that occur in] later design and
development stages Because of human inability tD
perform and communicate with perfection, software
development is accompanied by a quality assurance activity
(Pressman, 1987, p. 467).

59

Software testing is a critical element of software

quality assurance and represents the ultimate review of

specifications, design, and coding. Testing in some instances

is equivalent to 40 percent of the total project effort.

Rework is the third critical element utilizing a percentage of

project effort to correct errors located by quality assurance

and testing (Pressman, 1987) . These three variables are

entered directly into the model. They are used for

determining Development Productivity in man-days as shown.

DP = (1 - (0.22 + 0.11 + 0.14) x 3593

DP = 1904 man-days

Development Productivity is divided into the size of the

project for the determination of the Actual Development

Productivity. This productivity is defined as the outputs

produced by the process divided by the inputs consumed by the

process(Boehm, 1981, pp. 44). Since a certain percentage of

effort must be expended on testing, quality assurance, and

rework, it makes sense that Actual Development Productivity

only account for the effort expended on the actual

development.

ADP = 64000/1904 = 33.61 DSI/man-day

The next step is to divide the effort in man-months by

the schedule in months, which provides the average staff size

for the project. Entering this value intc Table 4-2 you will

Staff Size = 189.1/18.3 = 10.3

60

be able to extract the Communication Overhead. The larger the

staff size the more communication problems and breakdowns a

project will incur. Therefore, a percentage of the

communication overhead also affects productivity. Nominal

productivity is determined through the division of the Actual

Development Productivity by the multiplying the communication

overhead percent by 0.6. It I been determined that

approximately 60 percent of a single work day is utilized for

technical development, which accounts for the 0.6 factor

applied in the equation (Ghezzi, 1991, pp. 420).

NP = 33.61/[0.6 x (1 - 0.0645)]

NP = 59.88

Nominal productivity consists of many variables which

continually change values throughout the process of this

model. As the effort changes, the schedule changes, and as

the schedule or the effort change, the staff size changes,

which causes the communication overhead to change. The

equations listed below shows, step by step, how nominal

productivity changes dynamically with changes in the effort

and schedule variables. Comparing the new and old

productivity values from the computer results in REPORT.OUT

from Test 3 to the results from the above equations proves the

algorithms in the model provide the simulation with the

correct nominal productivity, and that Nominal Productivity is

a dynamically changing variable throughout the simulation

process.

61

Dynamic change In NP

DP - (1 - (0.22 + 0.11 + 0.14) x 3591

DP- 1903

ADP - 33.83

legStaff Size - 183 - 10.318.3

NP = 3. 59.910.8 (0.9355)

4. Experiment

This experiment was conducted to test the sensitivity

of just one of the many applications and advantages of

utilizing a coupled modeling system. The same data was used

for both projects as in Test 3 above.

Assuming the original COCOMO inputs for cost and

schedule were accurate, the simulation model ran in the two

project environment with a work force ceiling of 15 people.

To run this experiment, there were several adjustments that

were made to both models. The simulation model was adjusted

to allow for interaction between the two projects, as not to

run independently of each other as in Test 3. The other model

was adjusted to include the ability to enter the work force

ceiling variable and the start dates for both projects.

62

The work force ceiling is an attribute of the average

staff size. For both of these projects in this experiment, the

average staff size was approximately 10. Therefore, on the

average there would be only 20 people working on both projects

at any single point in time. The work force ceiling of a

project is the total number of people that management will

allow to work on a project at any particular time.

In many software companies resources are shared

between projects. This was one of the themes in the

experiment. By reducing the work force ceiling to 25 percent

of the combined total average staff size, or 15, the

simulation is forced to create an environment of priorities

which would ideally return the minimum effort required to

complete both projects in the shortest and most effective time

frame.

The iterative loop process in this model compares

effort estimated to effort actual and schedule estimated to

schedule actual. Prior to beginning the initial simulation

run, the user must provide inputs for the desired accuracy

levels between the estimates and the actual results for effort

and schedule. For example, inputting 0.05 would set the

effort error level of the estimate to 5% of the actual, where

the error rate' is as follows:

1 For this study the standard format for Error Rate is

the absolute value (ABS(x)] of the Estimate minus the Actual
divided by the Actual.

63

Error Rate = ABS(Estimate - Actual) / Actual

It also requires an input to restrict the number of

iterations. This would prevent the possibility of an endless

loop if the model could not reach the accuracy level

requested. After the conclusion of each simulation run, the

iterative loop process evaluates the results to determine if

they meet user requirements for accuracy. If not, then the

effort, schedule and productivity variables are adjusted and

re-entered into the simulation as new estimates. If they are,

then the program is terminated and the results are saved in

REPORT.OUT.

The start date variable for each project was included

to allow for different start dates of projects. This can

determine how one project in a later phase of project

development is affected by another project, just beginning,

and are required to share resources.

For this experiment, the work force ceiling used was

15. This experiment was run four times changing the start

dates each time. Project 1 always started at time zero, while

project 2 was zero for the first run, 100 for the second, 200

for the third and 300 for the last run. There are several

ways the results are displayed. The desired accuracy level

used was 1 percent for effort and 1 percent for schedule. For

the experiment run with the same start dates, Figures 4-2 and

4-3 show the Effort vs. number of Iterations of actual and

estimated effort from both projects and the Schedule vs.

64

number of Iterations of actual and estimated schedules from

both projects, respectfully.

EXP 1 1, TOTMD RELATIONSHIPS
Project 1 & 2 use BASEDAT

t-- S

2 ,)4, .. -

NO. of ITERATIONS
-- Proj 1 EST TOTMD _ Proj 1 ACT TOTMD

Proj 2 EST TOTMD Proj 2 ACT TOTMAD

Figure 4-2: Trend in Effort over a Series of
Iterations

EXP 1 -1, SCHEDULE RELATIONSHIPS
Project 1 & 2 use BASE.PRF

I : - -- -- :,i--- - __

a llUl-

NO of ITERATIONS
Proi 1 EST SKED Proj 1 ACT SKED

Proj 2 EST SKED ._Proj 2 ACT SKED

Figure 4-3: Schedule Trends over a Series of
Iterations

65

Figures 4-4 and 4-5 represent the same comparisons as

above; however, the start dates are no longer the same in this

test. The start date in the second project is now 100 days

later than the first.

EXP 1 -2, TOTMD RELATIONSHIPS
Project 1 & 2 use BASE.PRF

:. .o - .- e - - . ---
-
- - - I

NO. of ITERATIONS
" -7,_ Proj 1 EST TOTMD _. Proj 1 ACT TOTMD

Proj 2 EST TOTMD Proj 2 ACT TOTMD

Figure 4-4: Effort Trends over a Series of
Iterations with Different Start Dates

EXP 1 -2, SCHEDULE RELATIONSHIPS
Project 1 & 2 use BASE.PRF

___ __ -_-2_ - --

ara

NO of ITERATIONS

Proj 1 EST SKED IProj 1 ACT SKED

Proj 2 EST SKED Proj 2 ACT SKED

Figure 4-5: Schedule Trends over a Series of
Iterations with Different Start Dates

66

Figure 4-6 and 4-7 show how the percent error changes

over the number of iterations for the effort and schedule of

both projects. Both projects of Figure 4-6 had the same start

dates. Figure 4-7 had the second project start 100 days after

the first.

EXPI -1
Pi oject 1 & 2 use BASE.PRF

Z

L-
z
LU

LU

NO. of ITERATIONS

Proj I TOTMD Error Rate Proi 1 SKED Error Rate

Pr'oi 2 TOTMD Error Rate Proi 2 SKED Error Rate

Figure 4-6: Error Rate Trends

EXP1 -2
Project 1 & 2 use BASE.PRF

rs.

iL

z

NO of ITERATIONS
_ Proi I TOTMD Error Rate * Proi 1 SKED Error Rate

Proi 2 TOTMD Error Rate - Proj 2 SKED Error Rate

Figure 4-7: Error Rate Trends with Different Start
Dates

67

The third and fourth run of this test incremented

project 2 start dates by 100 days per run. In both cases, for

this size project, sharing of resources with the second

project start date 200 days or later had no significant effect

on either project. There are many distinguishable trends that

can be identified from the above graphs. Error Rate analysis

shows that as the number of iterations are increased, the

better the percent error rate. The error rate stabilized

after four iterations and continued to approach zero. The

effort and schedule related graphs show an expected increase

in costs due to the sharing of resources. However, in all

cases, even with the variable start dates, the estimated and

actual costs tended to approach one another over the number of

iterations. In addition, there was also a tendency for the

costs to plateau or level off. This could lead to providing

an upper cost limit on software development costs. Chapter

V will discuss these issues in greater detail.

68

V. CONCLUSIONS AND RECOIOEDATIONS

A. CONCLUSIONS

The primary objective of this thesis was to investigate

the utility of coupling the COCOMO model with a Systems

Dynamics Model of Software Project Management. It was

expected that a combined model would allow for a richer and

more complete set of cost drivers, thus increasing software

cost estimation accuracy. The premise was coupling a model

that quantified estimation based solely on objective

variables, with a dynamic simulation model, which incorporates

subjectivity into project management issues. This coupling

would create an environment which not only addresses the

necessary objective variables but also addresses many

subjective variables of project management that tend to have

an enormous impact on the cost and schedule estimates of a

project. It was also expected that a coupled model would

provLde a means for more extensive sensitivity analysis.

Another main objective of this thesis was to investigate the

opportunity to optimize cost estimation procedures in a two

project environment.

As a first step a simple "C" program was designed for

basic COCOMO to ensure that an interface could be

accomplished, i.e., an algorithmic model could be coupled with

69

a dynamic simulation model. After a successful initial test,

four additional "C" programs were designed as well as

expanding the first to include the ability to choose between

the basic or intermediate COCOMO models. The programs are

explained in detail in Chapter II. There were two separate

environments incorporated into the design.

The single project environment was developed to study

independent projects. The results of the tests in Chapter IV

proved that the COCOMO algorithms are correct in both the

basic and intermediate COCOMO models. The development of this

type of system lends itself to the ease of variable entry.

Whether the variable is from COCOMO or the simulation model,

it is an ideal environment for studying the sensitivity of

results to changes of a single variable on the entire project.

The two project environment was developed to incorporate

the use of sensitivity analysis to investigate the opportunity

to optimize cost estimation in an environment of shared

resources. The experiment conducted in Chapter IV established

the work force as the shared resource and limiting factor.

The experiment was run four times with the start date of the

second project being adjusted by 100 days each run. For this

experiment, the results were quite conclusive that over a

series of iterations the adjustments in a shared resource

environment cost estimation and schedule estimates could be

refined. This is apparent from the graphs of Chapter IV.

Comparison of error rates clearly shows that after four

70

iterations the error rate not only remained below five

percent, but continued to decrease after each additional

iteration toward an optimal zero percent error. In the other

two series of graphs, the displays depict the estimates vs.

actual results. In all cases, after several iterations, there

is a trend of convergence between estimate and actual costs.

This trend, however, does not occur without additional cost in

effort and schedule. Initially, the additional costs were

fairly significant, but as the number of iterations increased,

the results not only converged but they also tended to level

off. This could give a project manager a much more realistic

estimate of project cost and also provide top management with

fairly realistic high-low estimate of total project cost.

The experiment also examined the sensitivity of start

dates in the two project environment. With the remaining

variables constant, the start date of project 2 was adjusted

to 100 days after the start date of project 1. Two additional

runs under the same conditions were also conducted. Each

additional run increased the start date of project 2 by 100.

Therefore, the fourth run was to demonstrate the effects of

sharing resources with a project starting 300 days after the

start of another project. The results indicate that the cost

of sharing resources is less for two projects starting the

same date than for two projects starting 100 days apart. The

impact seemed to be greater on the first project because of

the need to reallocate less resources over the same work

71

requirements. Another interesting result was that after

approximately two thirds of project 1 was completed, sharing

resources no longer had a significant impact on either

project. These results conclude that it is easier to manage

a project with a known set of resources from the oeginning

rather than having to shift personnel and priorities one third

of the way through a project. This is just one example of how

a coupled model can utilize sensitivity analysis to study and

understand the many aspects and variables associated with

Software Project Management.

Using COCOMO and defining its objective variables provide

cost estimations which tend to fall short by itself. By

studying and learning how the subjective variables affect the

system can lead to not just an improved understanaing of

project management, but to the ability of narrowing the

percent error in cost estimation currently plaguing the

software industry. For example, COCOMO is used to provide

initial estimates to the simulation model. COCOMO has only

been accurate to a point. With respect to historical modei

accuracy, the Basic COCOMO estimates were within a factor of

1.3 of the actual cost only 29% of the time, and within a

factor of 2 of the actual cost only 60% of the time (Boehm,

1981, p. 114). Applied to this experiment, that would infer

that the actual project results would have been between 4670

and 7186 man-days for effort only 29% and 60% of the time.

respectively. From the results in chapter four, this coupled

72

model, utilizing an iterative loop process, continually

addressed subjective variables not incorporated into COCOMO to

establish what appears to be very accurate results. In

essence the coupled model accepts COCOMO estimates and then

incorporates the subjective influences of project management

to eliminate the need for a "safety factor" to account for the

factors 1.3 to 2 of the actual produced by COCOMO. This

experiment produced effort estimates within 13% of COCOMOs

original estimates and schedule estimates within 41% of COCOMO

estimates. The significant difference in schedule is due the

sharing of resources.

B. RECOMMENDATIONS FOR FUTURE PESEARCH

Several areas are available for conducting follow-on and

future research. Several prominent topics are: (1) refining

the current system, (2) conducting experiments using the

current system to evaluate the variables most sensitive to

project development to define a more complete set of cost

drivers, and (3) utilizing the model in an actual project

environment to study whether the system will optimize cost

estimation in a two project environment.

1. Refining the Current System

Since one of the purposes of this thesis was to

optimize cost estimation in a two project environment, the

programs developed were focused on the ability to accomplish

this. A possible follow-on research would be to enhance the

73

current system with the ability to change variables between

iterations, thus giving the user greater flexibility and

control in conducting experiments.

2. Use of Current System for Sensitivity Analysis

Experiments

This thesis was developed to create an avenue to study

and establish a richer set of cost drivers. The tool now

exists to use sensitivity analysis to determine the variables

that are most sensitive to project development. This would be

an obvious next step for a follow-on thesis topic.

3. Determine Real World Advantages

Laboratory experiments and use of historical data can

lead to very conclusive results. However, since this model

contains many subjective variables, among the countless number

of actual variables which effect Software Project Development,

the proof of the usefulness and effectiveness of this system

cannot be determined until it is used by industry. This is

the ideal experiment and test for follow-on studies.

74

APPENDIX A

* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
* * Program: Main Lang: C * */
* * Used Shareware <windows.h> in project environment * */

/* This is one of 5 programs written and interfaced with the */
/* Dynamic Simulation Model. This particular program is a simple */
/* program that allows the user the ability to select the single */
/* project environment or the two project environment from a menu. */
/* Once the user selects this program is terminated. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <windows.h>
#include <stdio.h>

/* Declarations for the menu windows boarder and background */

int bat; /* border atrib */
int wat; /* window atrib */

/* The following are static structures developed to be */

/* used throughout the program in pop-up menus for various */

/* user selection requirements. The learning curve for */
/* the use of windows.h was considerable, however, once */
/* learned it is fairly simple to create menus.

static struct pmenu intelc50 =
(0, FALSE, 0,
2, 3,
1, 8, " INITIALIZATION OF PROGRAMS", 0,
2, 8, " (Select one of the following)", 0,
4, 12, "l - SINGLE Project Environment", 1,
5, 12, "2 - TWO Project Environment", 2,
7, 3, "Select environment you wish to use and press enter:",0,

99, 99, "",99

WINDOWPTR w3; /* window to use

void main()

int sel;

* bat is the boarder attribute for the pop-up window */
* sets background to blue and boarder to white */
bat = v setatr(BLUE,WHITE,0,0);

* wat is the window attribute for the pop-up window */
/* sets background to blue and text to white */

75

wat = v setatr(BLUE,WHITE,0,0);

/* Introduction window is declared as w3 above and */
/* is opened and closed as if it were a file */

clrscr();
wn init();
w3-= wn_open(0,5,10,60,12,wat,bat);
if(w3) exit(l);

wnprintf(w3,"
\n\n");

wn_printf(w3," Welcome to the coupling of \n");
wn_printf(w3," COCOMO and a SYSTEMS DYNAMICS MODEL\n\n");
wn_printf(w3," **

\n\n");
wnprintf(w3," Programmed by Richard W. Smith & Tarek

Abdel-Hamid\n\n\n");
wn_printf(w3," Press [ANY KEY] to continue...");

v_getcho; /* Stops the program and awaits any keyboard entry */
wn-close(w3);

clrscr();
/* Sets the pop-up window size and assigns a ststic structure */
/* for menu operation */
/* sel awaits an appropriate keyboard entry from the menu choices */

sel = wnpopup(0, 5, 10, 55, 10, wat, bat, &intelc50, TRUE);

switch (sel) /* case statement to direct remainder of coupled */
/* system */

case 1:
exit (0); /* if selected, program exits to DOS for */

/* system call to INPUT1.EXE */
case 2:

exit (1); /* if selected, program exits to DOS for */
/* system call to INPUT2.EXE */

/* end program */

76

APPENDIX B

* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
* * Program: Main Lang: C * */
* * Used Shareware <windows.h> in project environment * */

/* This is one of 5 programs written and interfaced with the */

/* Dynamic Simulation Model. This particular program completes */
/* two tasks. First it accepts input variables for the dynamic */
/* simulation model and COCOMO acting as a front end for the */
/* model in the single project environment. Then it makes all */
/* the necessary COCOMO calcuations for either the Basic or
/* the intermediate versions of COCOMO. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <windows.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include <string.h>

/* Prototypes for the functions which will be */
/* described below. */

int filelist (void);
void model in(float *,float *,int *,float *,int,char a[],float *,float
*,int, float);

void icocomo in(float *,float *,int,char *);
void file save(float *,float *,float *,char *,floatint *,int,float);
void file prnt(float,float,int *,float *);
float interp(float);
float prod(float *,float,float,int *)
void calc(float *,int *,float *,float *,float,float,float);
void initial(float *);

1/* Declarations for the menu windows boarder and background */

int bat; /* border atribute */
int wat; /* window atribute */

/*Pointer to file being used*/

FILE * textfile;
FILE * fin;
FILE * fout;
FILE * fnew;

WINDOWPTR w3; /* window declaration */
WINDOWPTR w4; /* window declaration */

77

/* The following are static structures developed to be */
/* used throughout the program in pop-up menus for various */
/* user selection requirements. The learning curve for */
/* the use of windows.h was considerable, however, once
/* learned it is fairly simple to create menus. */

static struct pmenu intelc =
{0, FALSE, 0, /* Must be FALSE */
1, 3, /* The 1 initiates which row

/* The 3 determines number of lines */
/* which can be highlighted after row */

/* row, col */

1, 20, "INITIAL MENU", 0,
4, 12, "1 - LOAD project from disk.", 1,
5, 12, "2 - NEW project.", 2,
6, 12, "3 - EXIT Program.", 3,
9, 3, "Select with number or cursor and press [ENTER]...",O,

99, 99, "",99
1;

static struct pmenu intelc23 =
(0, FALSE, 0,
1, 3,
1, 20, "NEW PROJECT MENU", 0,
4, 12, "l - Display/Edit.", 1,
5, 12, "2 - RUN Dynamic Simulation.", 2,
6, 12, "3 - QUIT menu.", 3,
9, 3, "Select with number or cursor and press [ENTER]...",0,

99, 99, "",99
};

static struct pmenu intelcO =
(0, FALSE, 0,
1, 4,
1, 21, " MAIN MENU", 0,
3, 15, "l - LIST projects on disk.", 1,
4, 15, "2 - SELECT desired project.", 2,
5, 15, "3 - RUN Dynamic Simulation.",3,
6, 15, "4 - QUIT menu.", 4,
9, 3, "Select with number or cursor and press [ENTER] ...",0,

99, 99, "",99
1;

static struct pmenu intelcl9 -

(0, FALSE, 0,
2, 3,
1, 15, " COCOMO MODEL", 0,
2, 15, " ESC - EXIT ", 0,
4, 15, "1 - Basic COCOMO Model", 1,
5, 15, "2 - Intermediate COCOMO Model", 2,
7, 3, "Select the model you wish to use and press enter:",0,

99, 99, "",99

I; b

static struct pmenu intelc2l -

(0, FALSE, 0,
2, 3,
1, 6, "Current data file is for the Basic COCOMO", 0,
2, 6, " (Select one of the following)", 0,
4, 10, "1 - CONTINUE Basic COCOMO Model", 1,

78

5, 10, "2 - Intermediate COCOMO Model", 2,
7, 3, "Select the model you wish to use and press enter:",0,

99, 99, "",99
I;

static struct pmenu intelc22 =
(0, FALSE, 0,
2, 3,
1, 16, "SAVING FILES", 0,
2, 6, " (Select one of the following)", 0,
4, 10, "I - SAVE changes under Same Name ", 1,
5, 10, "2 - SAVE changes under New Name", 2,
7, 3, "Select the model you wish to use and press enter:",0,

99, 99, "",99
1;

static struct pmenu intelc20 =

(0, FALSE, 0,
2, 4,
1, 10, " COCOMO MODE SELECTION", 0,
2, 10, " ESC - EXIT ", 0,
4, 18, "l - Organic", 1,
5, 18, "2 - Semi-detached", 2,
6, 18, "3 - Embedded",3,
8, 3, "Select the appropriate mode and press enter: ",0,

99, 99, "",99

static struct pmenu intelcl =
(0, FALSE, 0,
2, 6,
1, 2, " RELY(Required software reliability)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 0.75", 1,
5, 15, "2 - Low; 0.88", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 1.15",4,
8, 15, "5 - Very High; 1.40", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelc2 =

f0, FALSE, 0,
2, 5,
1, 2, " DATA(Database size):", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "I - Low; 0.94", 1,
5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.08", 3,
7, 15, "4 - Very High; 1.16",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

79

static struct pmenu intelc3 =

(0, FALSE, 0,
2, 7,
1, 2, " CPLX(Product complexity)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1-Very Low; 0.70",l,
5, 15, "2-Low; 0.85",2,
6, 15, "3-Nominal; 1.00", 3,
7, 15, "4-High; 1.15",4,
8, 15, "5-Very High; 1.30", 5,
9, 15, "6-Extra High; 1.65", 6,
11, 1, "Select the appropriate Software Cost Driver Rating: ",0,

99, 99, "",99

static struct pmenu intelc4 =

(0, FALSE, 0,
2, 5,
1, 2, " TIME (Exection time constraint)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Nominal; 1.00", 1,
5, 15, "2 - High; 1.11", 2,
6, 15, "3 - Very High; 1.30", 3,
7, 15, "4 - Extra High; 1.66",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
I;

static ruct pmenu intelc5 =

(0, FA,)E, 0,
2, 5,
1, 2, " STOR(Main storage constraint)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "l - Nominal; 1.00", 1,
5, 15, "2 - High; 1.06", 2,
6, 15, "3 - Very High; 1.21", 3,
7, 15, "4 - Extra High; 1.56",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
I;

static struct pmenu intelc6 =

(0, FALSE, 0,
2, 5,
1, 2, " VIRT(Virtual machine volatility)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Low; 0.87", 1,
5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.15", 3,
7, 15, "4 - Very High; 1.30", 4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
1;

static struct pmenu intelc7 =
10, FALSE, 0,
2, 5,
1, 2, " TURN(Computer turnaround time)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "l - Low; 0.87", 1,

80

5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.07", 3,
7, 15, "4 - Very High; 1.15",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

I;

static struct pmenu intelc8
{0, FALSE, 0,
2, 6,
1, 2, " ACAP(Analyst capability)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.46", 1,
5, 15, "2 - Low; 1.19", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.86",4,
8, 15, "5 - Very High; 0.71", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
1;

static struct pmenu intelc9
(0, FALSE, 0,
2, 6,
1, 2, " AEXP(Applications experience)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.29", 1,
5, 15, "2 - Low; 1.13", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91",4,
8, 15, "5 - Very High; 0.82", 5,
11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

I

static struct pmenu intelclO =
(0, FALSE, 0,
2, 6,
1, 2, " PCAP(Programmer capability)", 0,
2, 2," ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.42", 1,
r,, 15, "2 - Low; 1.17", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.86",4,
8, 15, "5 - Very High; 0.70", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelcll =
(0, FALSE, 0,
2, 5,
1, 2, n VEXP(Virtual machine experience)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.21", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.90",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

81

static struct pmenu intelcl2 =

(0, FALSE, 0,
2, 5,
1, 2, " LEXP(Prograrmning Language experience)", 0,
2, 2, " ESC - EXIT ", 0,

4, 15, "1 - Very Low; 1.14", 1,
5, 15, "2 - Low; 1.07", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.95",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

1;

static struct pmenu intelcl3 =
(0, FALSE, 0,
2, 6,
1, 2, " MODP(Use of modern programming practices)", 0,
2, 2, " ESC - EXIT ", 0,

4, 15, "1 - Very Low; 1.24", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91", 4,
8, 15, "5 - Very High; 0.82", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelcl4 =

(0, FALSE, 0,
2, 6,
1, 2, " TOOL(Use of software tools)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "l - Very Low; 1.24", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91", 4,
8, 15, "5 - Very High; 0.83", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, n", 99

1;

static struct pmenu intelcl5 =

(0, FALSE, 0,
2, 6,
1, 2, " SCED(Required development schedule", 0,
2, 2, " ESC - EXIT ", 0,

4, 15, "1 - Very Low; 1.23", 1,
5, 15, "2 - Low; 1.08", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 1.04",4,
8, 15, "5 - Very High; 1.10", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
I; S

/* Function which lists all the data files (*.PRF) */
I* in the current directory. */

int filelist (void)

82

struct ffblk ffblk;
mnt done4;
printf("Data file listing: \n\n"); /* prf for profile *
done4 -findfirst("*.prf",&ffblk,O); /* finds first .prf file *
while (done4)

printf(" %s\n",ffb'~k.ff_name);
done4 = findnext(&ffblk); /* finds the next .prf file *

retlirn (1)

6 /* This function accepts numerous pointers to various strings ~
/* which allows the user to select variables from the display *
/* and change the value of current simulation input variables. *

void model in(float *fptr,float *PCNT,int *KDSI,float *results,int mode,char
fnarnel(],fl-oat *EAFl,float *cdrate,int donel, float mfl)

/* Declarations for this function *
int choicel, choice2, choice3;
float expl,exp2;
char stringl[] = "Organic";
char string2(] = "Semi-detached";
char string3(] = "Embedded";
char string[14];

switch (mode) /* mode variable is passed in to function ~
/* used to display one of the 3 strings declared *

/* above for display on this screen; switch/case format*/
case 1:

strcpy(string, stringi);
break;

case 2:
3trcpy(string~string2);
break;

case 3:
strcpy (string, string3);
break;

/* clears screen and displays variables on screen in below format *

while (!donel)

clrscr()
printf("
printf(n MODEL INPUTS for %s \nn,fname1);

printf (" %s mode\n", string);
printf("

p'rintf(" 1. INUDST: %5.3f 8. (1) TPFMQA[l]:
%5.3f\n",fptr(O],fptr[12]);

printf(" 2. ADMPPS: %5.3f (2) TPFMQA[2]:
%5.3f\n",fptrtl],fptr[13J);

printf(" 3. HIREDY: %5.3f (3) TPFtQA[3]
%5.3f\n",fptrt2l,fptr(14J);

printf(" 4. AVEMPT: %5.3f (4) TPFMQA[4]:
%5.3f\n",fptr[3],fptr(15]);

printf(" 5. TRPNHR: %5.3f (5) TP FMQA [5
%5.3f\n",fptr[4],fptr[16]);

83

printf(6. ASIMDY: %5.3f (6) TPFMQA[6];
%5.3f\nn,fptr[5],fptr(171);

printf(n 7. (1) TNERPK[l]: %5.3f (7) TPFMQA[7]:
%5.3f\n",fptr[6],fptr[181);

printf(" (2) TNERPK[2]: %5.3f (8) TPFMQA(8]:
%5.3f\n", fptr [7], fptr (19]);

printf(" (3) TNERPK[3]: %5.3f (9) TP FMQA [9
%5.3f\n",fptr[8],fptr [20]);

printf(" (4) TNERPK(4]: %5.3f (10) TPFMQA[lO):
%5.3f\n",fptr[9],fptr[21]);

printf (" (5) TNERPK[5]: %5.3f 9. DEVFRT:

%5.3f\n",fptr[l0J,fptr[22]);
printf (" (6) TNERPK[6]: %5.3f 10. DSIPTK:

%5.3f\n\n",fptr[ll],fptr[23]);
printf(" 11. Size of project (KDSI): %d\n\n",KDSI[0J);
printf(" 12. EXIT and SAVE changes.\n\n");

/* allows user to select a variable using assigned number and */
/* change current value by displaying just the variable selected *
/* once the new value is entered fuction returns to the display *
/* screen for user to see changes and allow additional changes *

printf(" Enter number of parameter you wish to change:)

scanf("%d",&choicel);

switch (choicel)

case 1:
clrscr 0;

gotoxy(l0,l0);
printf("Enter Initial Under Staffing Level Factor:)
scanf("%f",&fptr[0]);
break;

case 2:
clrscro;

gotoxy (10,r 10)
printf("Enter Average Daily Manpower per Staff member: "

scanf("%f",&fptr[1J);
break;

case 3:
clrscr ()
got oxy (10, 10)
printf ("Enter Hiring Delay:)
scanf("%f",&fptr[2]);
break;

case 4:
clrscr()

gotoxy(10, 10);
printf("Enter Average Employment Time; ~
scanf("%f",&fptr[3 II;
break;

case 5:
clrscr ()

got --Cy (10, 10)
printf ("Enter Training Overhead:)

scanf ("%f", &fptr (4]);
break;

case 6:
clrscro(,

gotoxy(10, 10);
printf ("Enter Average Assimilation Delay:)

84

scanf ("%f", &fptr [5])
break;

/* The TNERPK has several entries for this one variable by using *
/a second set of values for each entry the user can change one ~

/* entry at a time vice entring all the values each time even if *
/one value needed to be changed. *

case 7:
printf(" Enter subscript value of TNERPK parameter you wish to

* change:)
scanf ("%d", &choice2);
switch (choice2)

case 1:
clrscr()

gotoxy (10, 10)
printf ("Enter Error rate~l] :
scanf ("%f1, &f ptr (6]
break;

case 2:
clrscr ()

gotoxy(l0, 10);
printf ("Enter Error rate[2] :

scanf ("%f ", &fptr [7]
break;

case 3:
clrscr()

gotoxy(10,10);
printf("Enter Error ratell3] :

scanf ("%f ", &frtr [8
break;

case 4:
clrscro;

got oxy (10, 10)
printf ("Enter Error rate[4] :

scanf("%f",&fptr [9]);
break;

case 5:
clrscro;

got oxy (10, 1 C)
printf ("Enter Error rate[5] :

scanf("%f",&fptr(10]);
break;

case 6:
clrscr o;

got oxy (10, 10)
printf("Enter Error rate[6]:)

scanf("%f",&fptr(11]);
break;

default:
* break;

break;

/* TPFMQA set-up same way as TNERPK for same reasons *

case 8:

85

print f(Enter subscript value of TPFMQA parameter you wish
to change: ");

scanf ("%d", &choice3);
switch (choice3)

ci- se 1:
clrscr();

gotoxy(10 '0);
printf("Enter '.anned Fraction of Manpower for QA[l]:)
scanf("%f",&fptr[12]);
break;

case 2:
clrscr()

gotoxy (10,10);
printf ("Enter Planned Fraction of Manpower for QA)[2]:)

scanf ("%f ', &fptr[13);
break;

case 3:
clrscr()

got oxy (10, 10);
printf ("Enter 2lanned Fraction of Manpower for QA[3]:)

bcanf("%f",&fptr(14]);
br, -ak;

case 4:
clrscr()

gotoxy(10,10);
printf ("Enter Planned Fraction of Manpower for QA(4):)

scanf ("%f", &fptt [15]):-
break;

case 5:
clrscr ()

gotoxy (10, 10);
printf ("Enter Planned Fraction of Manpower for QA[5]: i)

scanf("%f",&fptr[16]);
break;

case 6:
clrscr()

gotoxy(10, 10);
printf ("Enter Planned Fraction of Manpower for QA(6]:)

scanf("%f",&fptr[17 1,;
break;

case 7:
clrscro)

gotoxy (10, 10):
printf ("Enter Planned Fraction of Manpower for QA[7] :)

3canf("%f",&fptr[18]);
break;

Case 8:
clrscr(o;

gotoxy (10, 10)
printf ("Enter Planned Fraction of Manpower for QAj8] :
3canf("%f",&fp'-r[191);
break;

case 9:
clrscr()

got oxy (10, 10);
printf("Enter Plann' -d Fraction of Manpower for QAj9I: "I
scanf("%f",&fptr[20]);
break;

case 10:
clrscr ()

86

gotoxy (10, 10)
printf("Enter Planned Fraction of Manpower for QA[10]: ");
scanf("%f",&fptr[21]);
break;

default:
break;

break;
case 9:

clrscr(;
gotoxy(10, 10) ;
printf("Enter DEVPRT: ");
scanf("%f",&fptr[22]);
break;

case 10:
clrscro;

gotoxy (10, 10);
printf("Enter Nominal Potential Productivity MD percent

\n\n");

printf(" Percent MD for tests: ");
scanf("%f",&PCNT[0]);
printf("\n Please be consistent with TPFMQA input values)\n");
printf(" Percent MD for QA:
scanf("%f",&PCNT[l]);
printf(" Percent MD for Rework: ");
scanf("%f",&PCNT[2]);

break;
case 11:

clrscro;
gotoxy (10, 10)

printf("Enter new Size of project (KDSI): ");
scanf("%d",&KDSI[0]);
break;

default:
donel = 1;

/* switch choice 1 */
switch (mode)

case 1:
expl = 1.05;
exp2 = 0.38;
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2:
expl = 1.12;
exp2 = 0.35;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case-3:
expl = 1.20;
exp2 = 0.32;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

/* Nominal productivity is one of 3 variables passed into */
/* the simulation model that need algorithmic calculations. */
/* This function will be discussed in detail below */
fptr(23] = prod(PCNT,results(0],results[2],KDSI);

87

/* while donel *

/* This function gives the user the opportunity to view current ~
/* values assigned to the COGOMO 15 cost drivers and make changes ~
/* if necessary. All cost drivers are defaulted to 1.00. */

void icocomo in(float *rate float *EAF1 mnt done3,char *fnamel)

/* rate is an array which hold the values for determining EAF for COCOMO ~
mnt chcice,i;
mnt CDl,CD2,CD3,CD4,CD5,CD6,CD7, CD8,CD9,CDlO,CD1l,CD12,CDl3, CDl4,CDl5;

/* clears screen and displays the 15 cost drivers and values *

while (done3)

clrscro;
printf (I

printf(n INTERMEDIATE LEVEL COCOMO MODEL INPUTS \n");
printf (" for %s \n",fnamel);
printf (I

printf (" 1. RELY: %l.2f\n",rate[0J);
printf (" 2. DATA: %l.2f\n",rate~lJ);
printf (H 3. CPLX: vl.2f\nn,ratet2J);
printf (" 4. TIME: %l.2f\nn,rate[3]);
printf (" 5. STOR: %1.2f\n",ratet4l);
printf (" 6. VIRT: %l.2f\n",rate[5]);
printf (n 7. TURN: %1.2f\n",rate[6]);
printf (" 8. ACAP: %l.2f\n",rate[7]);
printf (" 9. AEXP: %1.2f\n",rate[8]);
printf(n 10. PCAP: %l.2f\n",rate[9]);

printf(" 13. MODP: %l.2f\n",rate[10]D;
printf (" 14. TOOL: %1.2f\n",rate[l3]);

printf(" 15. SCED: %1.2f\n\n",rate(141);
printf (" 16. Press (16 or 0] when entries are

complete. \n\n");

/* allows user to select one of the above cost drivers by number *
1* using the case statments t'i program calls specific pop-up */
/* menus for the user to select specific values from and return ~
/* to display screen to see changes. */

printf(n Select Cost Driver and press [Enter]:)
scanf(n%d",&choice);
switch (choice)

case 1:
CDl = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcl, TRUE);
switc (CD1)

case 0:
break;

case 1:
rate[0] - 0.75;
break;

case 2:
rate[0] =0.88;

88

break;
case 3:

rate[O] = 1.00;
break;

case 4:
rate[O] = 1.15;
break;

case 5:
rate[O] = 1.40;
break;

break;
case 2:

CD2 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc2, TRUE);
switch (CD2)

case 0:
break;

case 1:
rate~l] = 0.94;
break;

case 2:
rate(l] = 1.00;
break;

case 3:
rate(l] = 1.08;
break;

case 4:
rate(l] = 1.16;
break;

break;
case 3:

CD3 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc3, TRUE);
switch (CD3)
f
case 0:

break;

case 1:
rate(2] = 0.70;
break;

case 2:
rate(2] = 0.85;
break;

case 3:
rate(2] = 1.00;
break;

case 4:
rate(2] = 1.15;
break;

case 5:
rate(2] - 1.30;
break;

case 6:
rate[2] - 1.65;
break;

break;
case 4:

89

CD4 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc4, TRUE);
switch (CD4)f
case 0:

break;

case 1:
rate(3] = 1.00;
break;

case 2:
rate[3] = 1.11;
break;

case 3:
rate[3] - 1.30;
break;

case 4:
rate[3] = 1.66;
break;

break;
case 5:

CD5 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc5, TRUE);
switch (CD5)

case 0:
break;

case 1:
rate[4] - 1.00;
break;

case 2:
rate[4] - 1.06;
break;

case 3:
rate(4] = 1.21;
break;

case 4:
rate(4] - 1.56;
break;

break;
case 6:

CD6 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc6, TRUE);
switch (CD6)

case 0:
break;

case 1:
rate[5] = 0.87;
break;

case 2:
rate[5] = 1.00;
break;

case 3:
rate[5] = 1.15;
break;

case 4:
rate[5] = 1.30;
break;

90

break;
case 7:

CD7 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc7, TRUE);
switch (CD7)

case 0:
break;

case 1:
rate[6] = 0.87;
break;

case 2:
rate[6] = 1.00;
break;

case 3:
rate[6] = 1.07;
break;

case 4:
rate(6] = 1.15;
break;

break;
case 8:

CD8 = wn popup(0, 5, 15, 50, 10, wat, bat, &intelc8, TRUE);
switch (CD8)
I
case 0:

break;

case 1:
rate(7] = 1.46;
break;

case 2:
rate[7] = 1.19;
break;

case 3:
rat![7] = 1.00;
break;

case 4:
rate[7] = 0.86;
break;

case 5:
rate[7J - 0.71;
break;

break;
case 9:

CD9 - wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc9, TRUE);
switch (CD9)

case 0:
break;

case 1:
rate[8] = 1.29;
break;

case 2:
rate[8] = 1.13;
break;

case 3:
rate(8] = 1.00;

91

break;
case 4:

rate[8] = 0.91;
break;

case 5:
rate[8] = 0.82;
break;

break;
case 10:

CD10 = wn popup(0, 5, 15, 50, 10, wat, bat, &intelcl0, TRUE);
switch (CD1O)

case 0:
break;

case 1:
rate[9] = 1.42;
break;

case 2:
rate(9] = 1.17;
break;

case 3:
rate[9] = 1.00;
break;

case 4:
rate(9] = 0.86;
break;

case 5:
rate(9] - 0.70;
break;

break;
case 11:

CD11 - wn popup(0, 5, 15, 50, 10, wat, bat, &intelcll, TRUE);
switch (CD11)

case 0:
break;

case 1:
rate[10J - 1.21;
break;

case 2:
rate[10] = 1.10;
break;

case 3:
rate[10] - 1.00;
break;

case 4:
rate[10] - 0.90;
break;

break;
case 12:

CD12 - wn popup(0, 5, 15, 50, 10, wat, bat, &intelcl2, 7TRUE);
switch (CD512)

case 0:
break;

92

case 1:
rate[11] = 1.14;
break;

case 2:
rate[11J = 1.07;
break;

case 3:
rate(111 = 1.00;
break;

case 4:
rate[11] = 0.95;
break;

break;
case 13:

CD13 =wn popup(0, 5, 15, 50, 10, wat, bat, &intelcl3, TRUE);
switch (CD13)

case 0:
break;

case 1:
rate[12] = 1.24;
break;

case 2:
rate(12] = 1.10;
break;

case 3:
rate[12] = 1.00;
break;

case 4:
rate(12] = 0.91;
break;

case 5:
rate(12] = 0.82;
break;

break;
case 14:

CD14 - wn_popuplO, 5, 15, 50, 10, wat, bat, &intelcl4, TRUE);
switch (CD14)

case 0:
break;

case 1:
rate E13] = 1.24;
break;

case 2:
rate[13] - 1.10;
break;

case 3:
rate[13] = 1.00;
break;

case 4:
rate[131 - 0.91;
break;

case 5:
rate(13] = 0.83;
break;

93

break;

/* for the schedule cost driver need both the EAF value */
/* but also the actual percent of schedule compression */
/* or expansion for later COCOMO calculations. */

case 15:
CD15 = wn popup(0, 5, 15, 50, 10, wat, bat, &intelcl5, TRUE);
switch (CD15)

case 0:
break;

case 1:
rate[14] = 1.23;
EAF) rO] = 0.75;
break;

case 2:
rate(14] = 1.08;
EAF1[0] = 0.85;
break;

case 3:
rate[14] = 1.00;
break;

case 4:
rate[14] = 1.04;
EAFI[0] = 1.30;
break;

case 5:
rate[14] = 1.10;
EAF1(0] = 1.60;
break;

break;
default:

done3 = 1;
break;

/* while done3 */

/* This function saves all of the current data for each project */
/* under a specific name specified by the user */

void file save(float *DSMI,float *cdrate,float *PCNT,char *fnamel,float EAF,int
*KDST,int-mode, float mfl)

if ((fout - fopen(fnamel,"wb"))-NULL)

fprintf(stderr,"Unable to open file %s \n",fnamel);

else

printf("\n\n\nSaving %s\n\n\n\n",fnamel);
printf("\n\n\nSaving %s\n",fnamel);
fwrite((void *) DSMI,26 * sizeof(float),l,fout);
fwrite((void *) KDSI,sizeof(int),2,fout);

94

fwrite((void *)&EAF,sizeof(float),l,fout);
fwrite((void *)cdrate,l5 * sizeof(float),l,fout);
fwrite((void *)PCNT,3 * sizeof(float),l,fout);
fwrite((void *)&mode,sizeof(int),l,fout);
fwrite((void *)&mfl,sizeof(float),l,fout);
fclose (fout);

/* This function provides the avenue to interface the output *
/* variables from this program into the simulation model via a ~
/* text file and pass certain other variables to the TESTIO */
/* program via a binary file for reporting estimates and actual *
/* results and error rates. */

void file-prnt(float TJTI-1, float TDEV1,int *KDSI,float *DSMI)

FILE *fpout;
long 1;

,'* need to change to long, once multiplied by 1000 *

/* size could be out of integer range. *

1 = KDSIC0J*1000.0;

/* Writes to textfile SIMONE.DNX ~

fprintf (textfile, "C RJBDSI=%ld\n", 1);
fprintf(textfile,"C TOTMDl=%5.2f\n", TOTMDl);
fprintf(textfile, "C TDEVI=%5.2f\n", TDEV1);
fprintf(textfile,"C INUDST=%5.2f\n", DSMI(01);
fprintf(textfile,"C ADMPPS-%5.2f\n", DSMI(lD);
fprintf(textfile,"C HIREDY=%5.2f\n", DSMI(21);
fprintf(textfile,"C AVEMPT=%5.2f\n", DSMI(31);
fprintf(textfile,"C TRPNHR=%5.2f\n", DSMI(41);
fprintf(textfile,"C ASIMDY=%5.2f\n", DSMI(5]);
fprintf(textfile,"T TNERPK=%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\,n",

DSMI[6],DSMIt7],DSMIE8],DSMI[9],DSMI[10],DSMItllI);
fprintf(textfile,"T TPFMQA=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f

% 5 . 3 f % 5 3 f 0 n n 1
DSMI (12],DSMI (13],DSMI (14] DSMI (151 DSMI (161 DSMI [17] DSMI [18],DSMI [19],DSMI (2

fprintf(textfile,"C DEVPRT=%5.2f\n", DSMIf22]);
fprintf(textfile,"C DSIPTK-%5.2f\n", DSMI[23]);
f close (text f ile) ;

/* Writes to binary file OUTFILE.DNX *
if ((fpout - fopen("outfilel.dnx,"wb"))=NJLL)

fprintf(stderr,"Unable to open file %s \n","outfilel.dnx");

else

/* write Estimated Effort and Estimated Schedule ~
fwrite((void *)&TOTtM1,sizeof(float),l,fpout);
fwrite ((void *)&TDEV1, sizeof (float) .,fpout);
fclose (fpout);

95

*P art of the calculation for Nominal Productivity requires ~
/* interpolation. This function accepts staff size variable *
/* and returns communication overhead factor for use in determining 4

/* Nominal Productivity. 4

float interp(float stf size)

float covhd;

if ((stf-size >= 0) && (stf-size <= 5))

covhd = (((stf size-0)* .015)/5);

if ((stf-size > 5) && (stf size <= 10))

covhd -(((stf size-5)* .045)/5) +.015;

if ((stf-size > 10) && (stf size <= iS))

covhd = (((stf-size-10)4 .075)/5) + .06;

if ((stf-size > 15) && (stf size <= 20))

covhd - (((stf size-15)4 .105)/5) + .135;

if ((Stf-size > 20) && (stf-size <- 25))

covhd - (((stf-size-20)* .135)/5) + .24;

if ((stf-size > 25) && (stf-size <= 30))

covhd - (((szf size-25)* .165)/5) + .375;

if (stf-size >- 30)

covhd = .54;

return covhd;

/* This function does the Nominal Productivity calculations 4

/* TOTMD1 - Effort passed from main function in man-days *
/* TDEV2 - Schedule in months not days! 4/

/* PCNT - array from main function which passes %Testing,%QA 4

/4 and %Rework for man-days 4

/* MM - Effort in man-months */
/4* stf size - Average Staff Size =MM/TDEV2 ~
/* DEVf7W - Development man-days 4

/4* ADP - Actual Development Productivity 4

/4 covhd - Communication Overhead 4

/* product - Nominal Productivity 4

float prod(float *PCNT,float TOTMD1,float TDEV2,int *KDSI)

float MM,stf size,DEVM,ADP,covhd;

float product;

MM = TOTMD1/19;

96

stf size = MM/TDEV2;
DEVM - (1-(PCNT(0]+PCNT[1]+PCNT[2]))*TOTMD1;
ADP - (KDSI(0] * 1000.0)/DEVMD;
covhd = interp(stfsize); /* call interpolation function */
product = ADP/(0.6 * (1.0-covnd));
return product;

/* This function completes COCOMO calculations for input into */
/* simulation model */
/* result array is used to hold man-day and schedule results */
/* EAFI contains the percent to multiply TDEV by from cost driver 15 */
/* mfl, expl and exp2 are the coefficients and exponents passed */
/' in from main function */

void calc(float *result,int *KDSI,float *EAFl,float *cdrate,float mfl,float
expl, float exp2)

int i;
float EAF; /* Estimated Adjustment Factor */
EAF = 1.00;
for (i=0;i<15;i++)

EAF *= cdrate(i]; /* Calculate the EAF by multiplying each */
/* cost driver by one another */

/* Total man-days calculation */
result[0] = mfl * (pow(KDS1,O],expl)) * 19.0 * EAF;

/* if cost driver 15 (schedule) is nominal then calculations */

/* are straight forward. If not you must divide the man-days */
/* by cdrate[14] or calculate total man-days as if schedule */
• was nominal. */

if (EAF1[0] != 1.00)

result[l] = 2.5 * pow(((result[0]/19.0)/cdrate[14]),exp2) * EAF1[0] *
19.0;

result[2] = 2.5 * pow(((result[0]/cdrate[14])/19.0),exp2) * EAFI[0];

else

-esu{tfi] = 2.5 * pow((result(§]/19.0),exp2) 19.0;
result[2] = 2.5 * pow((result[O]/19.0),exp2);

result[31 = EAF;
return;

/* Small function that simply initializes all the */
/* cost drivers to 1 */

void initial(float *cdrate)

int i;
for(i=0;i < 15; i++)

cdrate[i] = 1.00;

return;

97

void main()

int i, done=0,donel=0, done3=0, done5=0, done6=0;
int sel, sell, sel2, sel3, sel4, sel5;
int mode; /* One of 3 COCOMO modes */
int KDSI[2]; /* Stores size and counter */
float EAFI(I]; /* Stores schedule cost driver percent */
float cdrate[15], DSMI(26], PCNT[3],results[4];
float TOTMD1, TDEV1, TDEV2, ADP, mfl, expl, exp2;
char fnamel(13];
char fname2[13];
char string(25];
char stringl[25];
int ch, basic;

/* creates textfile which is interface with simulation model */
textfile = fopen("SIMONE.DNX","w");

/* initializes scedule cost driver to 1 */
EAFI[0] = 1.00;
/* bat is the boarder attribute for the pop-up window */
/* sets background to blue and boarder to white */
bat = v setatr(BLUE,WHITE,0,0);

/* wat is the window attribute for the pop-up window */
/* sets background to blue and text to white */
wat = v setatr(BLUE,WHITE,0,0);

clrscr();
,/* this while statement gets program started always initiated on */
while (!done6)

clrscr(; /* pop-up initial menu */
/* allows user to go to main menu */
/* create a new project or EXIT */

sel wnpopup(0, 5, 10, 55, 10, wat, bat, &intelc, TRUE);

switch (sel)

case 1: /* user selected to go to main menu
done5=0;
while(!done5)

clrscro; /* Main Menu will allow user to */
/* list, select, run simulation */
/* or exit this menu

sel2 = wn_popup(0, 5, 10, 55, 12, wat, bat, &intelc0, TRUE);

switch (sel2)

case 1: /* user selected to list data files */
filelist(; /* calls function to list all *.prf files */

/* no break; continues to case 2 */
case 2: /* user can look at list and enter file name /

printf("\n\ n:> Enter project filename: ")
scanf("%s",&fnamel);
/* if nane of file is mis-entered program goes back to */
/* main menu

98

if ((fin - fopen(fnamel,"rb"))==NULL)

fprintf(stderr,"Unable to open file %s to read\n",fnamel);
continue;

/* read in the data of the selected filename */
fread((void * DSMI,26 * sizeof(float),l,fin);
fread((void * KDSIsizeof(int),1,fin);
fread((void * &results[3],sizeof(float),l,fin);
fread((void * cdrate,15 * sizeof(float),l,fin);
fread((void * PCNT,3 * sizeof(float),l,fin)7
fread((void * &mode,sizeof(int),l,fin);
fread((void * &mfl,sizeof(float),l,fin);
fclose(fin);
/* re-intialize */
donel = 0;

/* function described above which allows user to display */
/* on screen the variables for the simulation model less */
/* the COCOMO variables */

model in(DSMI,PCNT,KDSI,results,mode,fnamtl,EAFl,cdrate,donel,mfl);

if~results(3]==l.00) /* checks if EAF = 1.00 */

clrscro; /* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wn iopup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch(sel3)

case 1: /* user selected basic model */
basic = 1;
initial(cdrate); /* Basic model EAF values must */
break; /w all be 1.00. This sets all */
/* cost drivers to 1.00 */

case 2: /* user selected intermediate model */
basic = 0;
initial(cdrate);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo in(cdrate,EAF1,done3,fnamel);
break;

} /* switch sel3 */
} /* if */
else /* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */
basic = 0;
icocomo in(cdrate,EAFl,done3,fnamel);

clrscr();
/* pop-up menu for user to select COCOMO mode */

mode = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);

switch (mode)

case 1: /* Organic mode */
if (basic 1)

mfl = 3.2; /* sets coefficient and exponents */

99

I

else

mfl = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38; /* for schedule calculation */
/* function that actually does the COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached mode */
mfl = 3.0;

expl = 1.12;
exp2 = 0.35;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 3: /* Embedded mode */
if (basic 1)

mfl = 3.6; /* sets coefficient and exponents */

else

mfl = 2.8;

expl = 1.20;
exp2 = 0.32;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

1 /* switch mode */

/* allows user to save current datafile under the same name */
/* or save the same or manipulated data under a new name */
sel4 = wn_popup(0, 5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (sel4)

case 1: /* save in same file */
file save(DSMI,cdrate,PCNT, fnamel,

results[3],KDSI,mode,mfl);
break;

case 2: /* if you are changing the name of the file */
clrscr(;
gotoxy(12,10); /* enter new name */
printf("Enter the new project filename: ");
scanf("%s",&string);

/* Program lets user enter more than 8 characters */
/* for filename. This copies first 8 characters */
/* into nem filename variable */

strncpy(fname2, string, 8);
string[8] = '\0'; /* resets string to null */
strcat(fname2,".prf"); /* automatically adds ".prf" */

/* writes new file to disk */
fnew = fopen(fname2,"wb");
fwrite((void *) DSMI,26 * sizeof(float),l,fnew),*
fwrite((void *) KDSIsizeof(int),1,fnew);
fwrite((void *) &results[3],sizeof(float), l,fnew);
fwrite((void *) cdrate,15 * sizeof(float),l,fnew);
fwrite((void *) PCNT,3 * sizeof(float),l,fnew);

100

fwrite((void *) &mode,sizeof(int),l,fnew);
fwrite((void *) &mfl,sizeof(float),l,fnew);

fclose (fnew);

break;
case 3: /* allows user to exit into the simulation */

/* model automatically saving data first */
done5 = 1; /* Will cause exit to main menu
done6 = 1; /* Will cause exit from program */

/* calls file_prnt which outputs both SIMONE.DNX */
/* and OUTFILE.DNX. After completion of this function */
/* exit program to DOS which calls Simulation Model */
fileprnt(results[0],results(l],KDSI,DSMI);
break;

case 4:
done5 = 1; /* Exits to main menu only */
done6 = 0;
break;

break;

case 2: /* your selection was to create a new project */

wn init(; /* initialize a window for text entry */
w4 = wnopen(0,5,10,58,12,wat,bat); /* open window w4; similar */

/* to opening a file */
/* 5 is starting row; 10 is starting column; 58 is characters wide */

/* second 12 is number of rows; wat is the window attribute and */
/* bat the boarder attribute */

if(!w4) exit(1);
wn_printf (w4, " \n * IMPORTANT

wnprintf(w4," \n\n In order to load a NEW project you must enter\n");
wnprintf(w4," input data for both COCOMO and the Dynamic

Simulation.\n");
wn_printf(w4," There are two forms on which all data must be

entered.\n");
wn_printf(w4," Please enter the data as accurately as

possible.\n\n\n\n");
wnprintf(w4," Press [ANY KEY] to continue...");

/* wnprintf works similar to fprintf: prints to window vice file */
v_getch () ;
wn close(w4);

/* Front end; allows user to make necessary inputs for the */
/* Dynamic Simulation Model; Inputs appear one at a time and */
/* there must be an entry for each variable; all inputs will */
/* be stored in an array DSMI */
clrscr();

printf("
printf(" * DYNAMIC SIMULATION MODEL INPUTS *\n");
printf("
printf(" Input the following: \n\n");
printf(" 1. Initial Under Staffing Level Factor: ");

scanf("%f",&DSMI[0]);
printf(" 2. Average Daily Manpower per Staff Member: "I;

scanf("%f",&DSMI(1]);

101

printf(" 3. Hiring Delay: ");
scanf("%f",&DSMI[2]);

printf(" 4. Average Employment Time: ");
scanf("%f",&DSMI[3]);

printf(" 5. Training Overhead: ");
scanf("%f",&DSMI[4]);

printf(" 6. Average Assimilation Delay: ");
scanf ("%f",&DSMI [5]);

printf(" 7. Error Rate (Must enter 6 input values): \n");
for(i=0; i < 6; i++)

printf (" Error rate[%d]: ", (i+l));
scanf("%f",&DSMI[i+6]);

printf(" 8. Planned Fraction of Manpower for QA \n");
printf(" (Must enter 10 input values): \n");

for(i=0; i < 10; i++)

printf (" Manpower for QA[%d] : ", (i+l));
scanf("%f",&DSMI[i+l2]);

printf(" 9. DEVPRT: ");
scanf("%f",&DSMI[22]);
/* entries to the PCNT array are for nominal productivity calculation */

printf(" 10. Nominal Potential Productivity Man Day percent
inputs: \n\n");

printf(" Percent MD for tests: ");
scanf("%f",&PCNT[0]);

printf("\n (Please be consistent with TPFMQA input values)\n");
printf(" Percent MD for QA: n);

scanf("%f",&PCNT[l]);
printf(" Percent MD for Rework: ");

scanf("%f",&PCNT[2]);

/* Allows user to make necessary inputs for the */
/* COCOMO Model; Inputs appear one at a time and */
/* there must be an entry for each variable */
clrscro;

printf ("
printf(" * COCOMO MODEL INPUTS *\n");
printf ("
printf(" Input the following: \n\n");
printf(" 1. Estimated Project Size in KDSI: "j;

qcanf("%d",&KDSI[0]); /* string gets KDSI value */

printf(" 2. Enter the Project Name: ");
scanf("%s",&stringl); /* string gets project name

strncpy(fnamel, stringl, 8); /* since dos only recognizes the first *,
/* 8 characters fnamel takes first 8 */
/* characters in stringl */

string(8] - '\0'; /* resets stringl to null set so next */
/* project name if short will not contain */
/* characters previously resident in stringl */

strcat(fnamel,".prf"); /* automatically tags all project names */
/* with .prf to easily recognize projects */

clrscr();
sell = wn popup(0, 5, 15, 55, 10, wat, bat, &intelcl9, TRUE);

/* selection of basic or intermediate COCOMO */
switch (sell)

102

case 1: /* user selection basic */
basic = 1;
EAFI[0] = 1.00; /* initializes schedule percent to 100 */
initial(cdrate); /* sets all cost drivers to nominal */
break;

case 2: /* user selection intermediate */
basic = 0;
done3 = 0
EAFI[0] = 1.00; /* initializes schedule percent to 100 */
initial(cdrate); /* sets all cost drivers to nominal */
icocomo in(cdrate,EAFl,done3,fnamel); /* allows user to set */

/* cost driver values */
break;

clrscr();

mode = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */

switch (mode)

case 1: /* Organic */
if (basic 1)

mfl = 3.2; /* sets coefficient and exponents */

else

mfl = 2.4;

expl = 1.05;
exp2 = 0.38;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAF1,cdrate,mfl,expl,exp2);
break;

case 3: /* Embedded */
if (basic != 1)

mfl = 3.6; /* sets coefficient and exponents *1

else

mfl = 2.8;

expl = 1.20;
exp2 = 0.32;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

/* calls function to do nominal productivity calculations */
/* results(0]-Total man-days; results[2]=schedule in months */
DSMI[23] - prod(PCNT,results[0],results[2],KDSI);

103

/* display/edit simulation model inputs */
modelin(DSMI,PCNT,KDSI,results,mode,fnamel,EAFl,cdrate,donel,mfl);

/* save updated file automatically */
filesave(DSMI,cdrate,PCNT, fnamel,results[3],KDSI,mode,mfl);

/* this ends the input phase and initial COCOMO calculations */
/* the user now goes to NEW PROJECT MENU which enables the user */
/* to Display/Edit or run simulation model */
done - 0;
while(!done) /* New Project Menu loop */

clrscr();
sel5 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc23, TRUE);

/* New Project Menu */
switch (sel5)

case 1: /* user selected Display/Edit */
/* display or edit simulation model inputs */

modelin(DSMI,PCNT,KDSI,results,mode,
fnamel,EAFlcdrate,donel,mfl);

if(results[3]==l.00) /* checks if EAF = 1.00 */

clrscr); /* gives user option to continue */
/* using basic model or use intermediate */
sel3 - wnpopup(0, 5, 10, 50, 10, wat, bat, & i nt e I c 2 1,

TRUE);
switch (sel3)

case 1: /* user selected basic model */
basic = 1;
initial(cdrate); /* Basic model EAF values must*/
break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */

case 2: /* user selected intermediate model */
initial(cdrate);

/* Displays cost driver screen; allows user to
/* set cost drivers to desired level */

basic = 0;
icocomo in(cdrate,EAF1,
done3, fnamel);
break;

/* switch sel3 */
J /* if */
else
/* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */
basic - 0;
icocomoin(cdrate,EAFl,done3,fnamel);

clrscr();
switch (mode)

case 1: /* Organic mode */
if (basic != 1)

mfl = 3.2; /* sets coefficient and exponents */

104

else

mfl = 2.4;
1
expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* function that actually does the COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached mode */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI,EAFl,cdrate,mfl,
expl,exp2);
break;

case 3: /* Embedded mode */
if (basic != 1)

mfl = 3.6; /* sets coefficient and exponents */

else

mfl = 2.8;

expl = 1.20;
exp2 = 0.32;
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

/* switch mode */
/* automatically save latest changes to file */
file save(DSMI,cdrate,PCNT, fnamel,results[3],KDSI,mode,mfl);
break;

case 2: /* user selected to run simulation model */
done = 1; /* allows user to exit to initial menu
done6 = 1; /* allows user to exit out of program */

/* calls file_prnt which outputs both SIMONE.DNX */
/* and OUTFILE.DNX. After completion of this function */

/* exit program to DOS which calls Simulation Model */
fileprnt(results(0],results(l],KDSI,DSMI);
break;

case 3:
done = 1; /* allows user to exit to initial menu */
break;

break;
case 3:

exit(l); /* EXITS FROM PROGRAM WITHOUT DOING SIMULATION */

exit (0); /* EXITS rROM PROGRAM WITH DOING SIMULATION */

105

APPENDIX C

/* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
/* * Program: OUTPUT1 Lang: C * */
/* * Used Shareware <windows.h> in project environment * */
/* ** ** ./

/* This is one of 5 programs written and interfaced with the */

/* Dynamic Simulation Model. This particular program gathers */
/* outfile information from several files to generate reports. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <stdio.h>
#include <math.h>
#include <conio.h>

void main(void)

/* Declarations for variables used within this program */

int i, k=0, m=0, KDSI[2], count, num;
float j, md, time, TOTMD1, TDEV1, diff, diffl;
char string[8], dest[8], stringl[8], destl[8];
FILE *fpin, *fdata, *results;

/'* initializes the dest(destination) string as null */
for (i=O;i<8;i++)

dest[il = "\0'.

/* Read the outfile.dnx: Binary file used in reporting */
/* Easier to work with binary in this case */

if ((fdata - fopen("outfilel.dnx","rb"))==NULL)

fprintf(stderr,"Unable to open file %s \n","outfilel.dnx");

else /* reads effort and schedule */

fread(void *) &TOTMD1,sizeof(float),lfdata)
fread((void *) &TDEV1,sizeof(float),l,fdata);

fclose(fdata);

fpin - fopen("SIMONE.OUT","r"); /* get output from simulation */

/* GET EFFORT VALUE FROM SIMULATION OUTPUT FILE */
i = fgetc(fpin); /* get first character from output file */

while (i != 40) /* continue getting characters until ascii */
/* #40 '(' */

i = fgetc(fpin);

106

i = f getc (f pin);
while (i !- 41) /* now get each char and save as string *

string(k]
k++;
i = f get c(f pin);

string[k) -=\1
i = fgetc(fpin);

/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE *
while (i != 40)

2. = fgetc(fpin);

i = fgetc(fpin);
while (i !=41) /* continue getting characters until ascii ~

/* #41 ''*

stringl(m] -=

i= fgetc(fpin);

stringl~m] = \;
f close (f pin);
strncpy(dest,string,k); ' copy actual effort into dest string ~
strncpy(destl,stringl,m); /* copy actual sked into desti string *
md = atof(dest); /* string to float conversion ~
time = atof(destl);

if (TOTMDl >= md) /* checks if estimated effort is > actual *

if (TDEV1 >- time) /* checks if estimated sked is > actual *

diff =(TOTMDl-md)/md; /* calc error rates for effort *
diffl =(TDEVl-time)/time; /* calc error rates for sked ~

else

diff =(TOTMDl-md)/md; /* calc error rates for effort *
diffl (time-TDEVl)/time; /* calc error rates for sked ~

else

if (TDEV1 >- time) /* checks if estimated sked is > actual *

diff =(md-TOTMD1)/md; /* calc error rates for effort *
diffl -(TDEVl-time)/time; I* calc error rates for sked *

else

diff =(md-TOTMD1)/md; /* calc error rates for effort *

diffl =(time-TDEVl)/time;/* calc error rates for sked ~

/* open report file *
results - fopen("REPOP.T.OUT","a");

/* output format *

107

fprintf(results,"\n\n\nEstimated Actual Percent Estimated Actual
Percent\n");
fprintf (results, "man-days man-days Error Schedule Schedule am

\n");
fprintf (results," %6. Of %6.Of %6.Of %6.Of %6.Of %6.Of

\nn,TOTMD1,md,diff,TDEV1,time,diffl);
fprintf(results,fl\n\n**** This data is available in REPORT.OUT ****\nl);
fprintf (results,"**** Each time the model is run REPORT.OUT will change

****\nl) ;
fclose (results);

/* display for printing report or displaying the report on screen
gotoxy (15, 10) ;
printf(" REPORT FORMAT CHOICE\n-);
got oxy (15, 12);
printf(n 1 - Display results\n");
gotoxy(15, 13);
printf(" 2 - Print results\n");
gotoxy (15, 14);
printf(" 3 - Exit\n");
gotoxy(15, 16);
printf("Enter one of the above:)
scanf("%d",&num);

switch(nun) /*case statement exits program or to DOS *

case 1:
clrscro;
exit (4); /* exit to DOS and display results on screen ~

case 2:
clrscro;
exit (3); /* exit to DOS and send results to printer *

case 3:
exit (0); /* exit program *

/* end output 1 program ~

108

APPENDIX D

/* Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * *
/* Program: Input2 Lang: C *

/* Used Shareware <windows.h> in project environment * *

/* This is one of 5 programs written and interfaced with the *
/* Dynamic Simulation Model. This particular program completes *
/* two tasks. First it accepts input variables for the dynamic *
/* simulation model and COCOMO acting as a front end for the *
/* model in the two project environment. Then it makes all *
/* the necessary COCOMO calcuations for either the Basic or ~
/* the intermediate versions of COCOMO for each project. */

/* The following headers were used and needed to utilize the *
/* library functions used throughout this program. *

#include <windows.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include <string.h>
/* Prototypes for the functions which will be *
/* described below.

mnt filelist (void);
void model-in(float *,float *,int *,float *,int,char ajI],float *

float*,int, float);
void icocomo in(float *,float *,int,char*)
void file save(float *,float *,float *,char *,float,int *,int,float);
void file-pass(float,float,float,float,int *,int *,float *,float ~

float *,float*)
float interp(float);
float prod(float *, float, float,int*)
void calc(float *,int *,float *,float *,float,float,float);
void initial(float *);
void dsm in(float *, float*;
void como-in(int *,char*)

/* Declarations: */
* mt bat; /* border atrib ~

mnt wat; -/* window atrib *

/*Pointer to files being used*/
FILE * textfile;
FILE * fin, *fin2;
FILE * fout, *fout2;
FILE * fnew, *fnew2;
WINDOWPTR w3; 1* window declaration *
WINDOWPTR w4; /* window declaration *

109

/* The following are static structures developed to be */
/* used throughout the proqram in pop-up menus for various /
/* user selection requirements. The learning curve for */
/* the use of windows.h was considerable, however, once
/* learned it is fairly simple to create menus. */

static struct pmenu intelc =

(0, FALSE, 0, /* Must be FALSE */
1, 3, /* The 1 initiates which row */

/* The 3 determines number of lines */
/* The 3 determines number of lines */
/* which can be highlighted after row

/* row, col */

1, 20, "INITIAL MENU", 0,
4, 12, "l - LOAD projects from disk.", 1,
5, 12, "2 - NEW projects.", 2,
6, 12, "3 - EXIT Program.", 3,
9, 3, "Select with number or cursor and press [ENTER] ...",0,

99, 99, "",99

static struct pmenu intelc25 =

{0, FALSE, 0,
1, 3,
1, 12, " SELECT NEW PROJECT MENU", 0,
4, 12, "1 - ENTER New Project 1.", 1,
5, 12, "2 - ENTER New Project 2.", 2,
6, 12, "3 - EDIT/DISPLAY/RUN.", 3,
9, 3, "Select with number or cursor and press [ENTER] ...",,

99, 99, "",99
i ;

static struct pmenu intelc23 =

(0, FALSE, 0,
1, 4,
1, 20, "NEW PROJECT MENU", 0,
4, 12, "1 - Display/Edit Project 1.", 1,
5, 12, "2 - Display/Edit Project 2.", 2,
6, 12, "3 - RUN Dynamic Simulation.", 3,
7, 12, "4 - QUIT menu.", 4,
9, 3, "Select with number or cursor and press [ENTER]...",0,
q , 99, -",99
1;

static struct pmenu intelcO =

(0, FALSE, 0,
1, 4,
1, 21, " MAIN MENU", 0,
3, 15, "1 - SELECT Project 1 from disk.", 1,
4, 15, "2 - SELECT Project 2 from disk.", 2,
5, 15, "3 - RUN Dynamic Simulation.",3,
6, 15, "4 - QUIT menu.", 4,
9, 3, "Select with number or cursor and press [ENTER] ...",0,

99, 99, "",99
;

1i0

static struct pmenu intelcl9 -
{0, FALSE, 0,
2, 3,
1, 15, " COCOMO MODEL", 0,
2, 15, " ESC - EXIT ", 0,
4, 15, "1 - Basic COCOMO Model", 1,
5, 15, "2 - Intermediate COCOMO Model", 2,
7, 3, "Select the model you wish to use and press enter:",0,

99, 99, "",99

static struct pmenu intelc2l =

(0, FALSE, 0,
2, 3,
1, 6, "Current data file is for the Basic COCOMO", 0,
2, 6, " (Select one of the following)", 0,
4, 10, "1 - CONTINUE Basic COCOMO Model", 1,
5, 10, "2 - Intermediate COCOMO Model", 2,
7, 3, "Select the model you wish to use and press enter:",0,

99, 99, "",99
1;

static struct pmenu intelc22 =
{0, FALSE, 0,
2, 3,
1, 16, "SAVING FILES", 0,
2, 6, " (Select one of the following)", 0,
4, 10, "1 - SAVE changes under Same Name ", 1,
5, 10, "2 - SAVE changes under New Name", 2,
7, 3, "Select the model you wish to use and press enter:",0,
99, 99, "",99
1;

static struct pmenu intelc20 =

(0, FALSE, 0,
2, 4,
1, 10, " COCOMO MODE SELECTION", 0,
2, 10, " ESC - EXIT ", 0,
4, 18, "1 - Organic", 1,
5, 18, "2 - Semi-detached", 2,
6, 18, "3 - Embedded",3,
8, 3, "Select the appropriate mode and press enter: "10,
99, 99, "",99

static struct pmenu intelcl
(0, FALSE, 0,
2, 6,
1, 2, " RELY(Required software reliability)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 0.75", 1,
5, 15, "2 - Low; 0.88", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 1.15",4,
8, 15, "5 - Very High; 1.40", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelc2

111

(0, FALSE, 0,
2, 5,
1, 2, " DATA(Database size) :", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "I - Low; 0.94", 1,
5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.08", 3,
7, 15, "4 - Very High; 1.16",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
I;

static struct pmenu intelc3 =

(0, FALSE, 0,
2, 7,
1, 2, " CPLX(Product complexity)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1-Very Low; 0.70",1,
5, 15, "2-Low; 0.85",2,
6, 15, "3-Nominal; 1.00", 3,
7, 15, "4-High; 1.15",4,
8, 15, "5-Very High; 1.30", 5,
9, 15, "6-Extra High; 1.65", 6,
11, 1, "Select the appropriate Software Cost Driver Rating: ",0,

99, 99, "",99
1;

static struct pnenu intelc4 =

(, FALSE, 0,
2, 5,
1, 2, " TIME(Exection time constraint)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Nominal; 1.00", 1,
5, 15, "2 - High; 1.11", 2,
6, 15, "3 - Very High; 1.30", 3,
7, 15, "4 - Extra High; 1.66",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelc5 =

(0, FALSE, 0,
2, 5,
1, 2, " STOR(Main storage constraint)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Nominal; 1.00", 1,
5, 15, "2 - High; 1.06", 2,
6, 15, "3 - Very -High; 1.21", 3,
7, 15, "4 - Extra High; 1.56",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelc6 =
(0, FALSE, 0,

2, 5,
1, 2, " VIRT(Virtual machine volatility)", 0,
2, 2, " ESC - EXIT ", 0,

112

4, 15, "I - Low; 0.87", 1,
5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.15", 3,
7, 15, "4 - Very High; 1.30", 4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, -""',99

I ;

static struct pmenu intelc7 =

(0, FALSE, 0,
2, 5,
1, 2, TURN(Computer turnaround time)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "i - Low; 0.87", 1,
5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.07", 3,
7, 15, "4 - Very High; 1.15",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "-,99
I};

static struct pmenu intelc8 =
{0, FALSE, 0,
2, 6,
1, 2, " ACAP(Analyst capabilt'-" , 0,
2, 2, " ESC - EXIT", ,

4, 15, "I - Very Low; 1.46", 1,
5, 15, "2 - Low; 1.19", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.86",4,
8, 15, "5 - Very High; 0.71", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

1;

static struct pmenu intelc9 =

{0, FALSE, 0,
2, 6,
1, 2, " AEXP(Applications experience)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.29", 1,
5, 15, "2 - Low; 1.13", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91",4,
8, 15, "5 - Very High; 0.82", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
1;

static struct pmenu intelcl0 =

(0, FALSE, 0,
2, 6,
1, 2, " PCAP(Programmer capability)", 0,
2, 2, " ESC - EXIT ", 0,

4, 15, "I - Very Low; 1.42", 1,
5, 15, "2 - Low; 1.17", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.86",4,
8, 15, "5 - Very High; 0.70", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

113

1;

static struct pmenu intelcil =

(0, FALSE, 0,
2, 5,
1, 2, " VEXP (Virtual machine experience)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Lc-; 1.21", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.90",4,
10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelcl2 =

(0, FALSE, 0,
2, 5,
1, 2, " LEXP (Programming Language experience)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.14", 1,
5, 15, "2 - Low; 1.07", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.95",4,

10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelcl3 =

(0, FALSE, 0,
2, 6,
1, 2, " MODP (Use of modern programming practices)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.24", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91", 4,
8, 15, "5 - Very High; 0.82", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

static struct pmenu intelcl4 =
(0, FALSE, 0,
2, 6,
1, 2, " TOOL(Use of software tools)", 0,
2, 2, " ESC - EXIT ", 0,
4, 15, "1 - Very Low; 1.24", 1,
5, 15, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 0.91", 4,
8, 15, "5 - Very High; 0.83", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99I ;

static struct pmenu intelcl5 =
(0, FALSE, 0,
2, 6,
1, 2, " SCED(Required development schedule", 0,
2, 2, " ESC - EXIT ", 0,

114

4, 15, "l - Very Low; 1.23", 1,
5, 15, "2 - Low; 1.08", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, "4 - High; 1.04",4,
8, 15, "5 - Very High; 1.10", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, ...,99

/* Function which lists all the data files (*.prf) */
/* in the current directory. */

int filelist (void)

struct ffblk ffblk;
int done4;
printf("Data file listing: \n\n");
done4 = findfirst("*.prf",&ffblk,0); /* finds first .prf file */
while (!done4)

printf(" %s\n",ffblk.ff name);
done4 = findnext(&ffblk); /* finds the next .prf file */

I
return(1);

/* This function accepts numerous pointers to various strings */
/* which allows the user to select variables from the display */
/* and change the value of current simulation input variables. */

void modelin(float *fptr,float *PCNT, int *KDSI,float *results,int mode,char
fnamel[],float *EAFl, float *cdrate,int donel,float mfl)
f

/* Declarations for this function */
int choicel, choice2, choice3;
float expl,exp2;
char stringl[] = "Organic";
char string2[] = "Semi-detached";
char string3(] = "Embedded";
char string[14];

switch(mode) /* mode variable is passed in to function */
/* above for display on this screen; switch/case format*/
/* above for display on this screen; switch/case format*/

case 1:
strcpy(string, stringl);
break;

case 2:
strcpy(string, string2);
break;

case 3:
strcpy(string, string3);
break;

/* clears screen and displays variables on screen in below format */

while(!donel)

clrscr();
printf(" **

115

printf(" MODEL INPUTS for %s \n",fnamel);
printf (" %s Mode\n", string);

printf (N ********************nnl
printf(n 1. INUDST: %5.3f 8. (1) TPFMQA[1]:

%5 .3f\n", fptr (0], fptr[12]);
printf(" 2. ADMPPS: %5.3f (2) TPFMQA[2]:

%5.3f\n",fptr[1],fptr[13]);
printf(" 3. HIREDY: %5.3f (3) TPFMQA[3]:

printf(" 4. AVEMPT: %5.3f (4) TPFMQA (4]
%5.3f\n",fptr[3],fptr[15]);

printf(" 5. TRPNHR: %5.3f (5) TPFMQA[5]:
%5.3f\n",fptr(4],fptr[16]);

printf(" 6. ASIMDY: %5.3f (6) TPFMQA[6]:
%5.3f\n",fptr[S],fptr[17]);

printf(" 7. (1) TNERPK[l]: %5.3f (7) TPFMQA(7]:
%5.3f\n",fptrll6],fptr[18]);

printf(" (2) TNERPK[2J: %5.3f (8) TPFMQA[8]:
%53f \n" ,fptr [7 1 fptr 11191);

printf(" (3) TNERP K(C3] %5.3f (9) TPFMQA(9]:
%5.3f\n",fptr[8],fptr[20]);

printf(" (4) TNERPK[4] : %5.3f (10) TPFMQA[10]:
%53f\n", fptr [9], fptr [21]);

printf (" (5) TNERPK[5]: %5.3f 9. DEVPRT:
%5.3f\n",fptr[10J1,fptr[22]);

printf (" (6) TNERPK(6] : %5.3f 10. DSIPTK:
%5.2f\n\n",fptr[11J,fptr(23]))

printf(" 11. Size of project (KDSI): %d'\n'\ n",DSI[0j;
printf(" 12. EXIT and SAVE changes.\n\nn)

/* allows user to select a variable using assigned number and *
/* change current value by displaying just the variable selected *
/* once the new value is entered fuction returns to the display *
/screen for user to see changes and allow additional changes *

printf(" Enter number of parameter you wish to change:)
scanf ("%dn, &choicel);

switch (choicel)

case 1:
clrscr o;

got oxy (10, 10) ;
printf ("Enter Initial Under Staffing Level Factor:)
scanf("%fn,&fptr(0]);
break;

case 2: crco

got oxy (10, 10)
printf ("Enter Average Daily Manpower per Staff Member:)

break;
case 3:

clrscro;
got oxy (10, 10);
printf("Enter Hiring Delay:)
scanf("%fn,&fptr(2]);
break;

case 4:
clrscro;

got oxy (10, 10);

116

printf ("Enter Average Employment Time: n);
scanf("%fn,&fptr [3]);
break;

case 5:
clrscro;

gotoxy(10,10);
printf("Enter Training Overhead:)
scanf("%fn,&fptr[4]);
break;

case 6:
clrscr 0;

gotoxy (10, 10);
printf(nEnter Average Assimilation Delay:)
scanf("%f",&fptr [5]);
break;

/* The TNERPK has several entries for this one variable by using*~/
/a second set of values for each entry the user can change or& *

/* entry at a time vice entring all the values each time even if */
/one value needed to be changed. *

case 7:
printf(" Enter subscript value of TNERPK parameter you wish

c~o change:)
scanf ("%dn, &choice2);
switch (choice2)

case 1:
clrscro;
got oxy (10, 10)
printf("Enter Error rate[1]:)

scanf("%f",&fptr[6]);
break;

case 2:
clrscr 0;
got oxy (l0, 10);
printf ("Enter Error rate[2] :
scanf("%f",&fptr[7]);
break;

case 3:
clrscr 0;
got oxy (10, 10)
printf("Enter Error rate[3] :
scanf("%fn,&fptr[8]);
break;

case 4:
clrscro;
got oxy (10, 10)
printf("Enter Error rate[4]:)
scanf("%f",&fptr[91);

- break;
case 5:

clrscro;
gotoxy(10,10);
printf("Enter Error rate(5]: n);
scanf("%f",&fptr[10]);
break;

case 6:
clrscr()
got oxy (10, 10);
printf ("Enter Error rate(6] :

117

scanf(n%f",&fptr[11]);
break;

default:
break;

break;

/* TPFMQA set-up same way as TNERPK for same reasons ~
case 8:

wis tochage:n);printf(" Enter subscript value of TPFMQA parameter you

scanf("%d",&choice3);
switch (choice3)

case 1:
clrscro;

got oxy (10, 10)
printf ("Enter Planned Fraction of Manpower for QA(l]:)

scanf("%f",&fptr[12]);
break;

case 2:
clrscr (,;

got oxy (10, 10)
printf("Enter Planned Fraction of Manpower for QA(2J:)

scanf("%f",&fptr[13]);
break;

case 3:
clrscr 0;

gotoxy (l0, 10);
printf ("Enter Planned Fraction of Manpower for QA(3]:)

scanf("%fn,&fptr[14]);
break;

case 4:
clrscr 0;

gotoxy (10, 10)
printf("Enter Planned Fraction of Manpower for QA(4]: n);
scanf("%f",&fptr[15]);
break;

case 5:
clrscro;

gotoxy(1O, 10);
printf("Enter Planned Fraction of Manpower for QA(5]: n);
scanf("%f",&fptr[16]);
break;

case 6:
clrscro;

gotoxy (10,10);
printf("Enter Planned Fraction of Manpower for QA[6]:)

scanf("%f",&fptr(17]);
break;

case 7:
clrscro;

gotoxy (10,10);
printf("Enter Planned Fraction of Manpower for QAE71:)

scanf("%f",&fptr[18]);
break;

case 8:
clrscr ()

gotoxy(l0,l0);
printf("Enter Planned Fraction of Manpower for QA(8): ;
scanf("%f", &fptr[19]);

break;
case 9:

clrscr();
gotoxy (10, 10)

printf("Enter Planned Fraction of Manpower for QA[9]: ");
scanf("%f",&fptr[20]);
break;

case 10:
clrscr();

gotoxy (10, 10)
printf("Enter Planned Fraction of Manpower for QA[10]: ");
scanf("%f",&fptr[21]);
break;

default:
break;

break;
case 9:

clrscr(;
gotoxy(10,10);
printf("Enter DEVPRT: ");
scanf("%f",&fptr[22]);
break;

case 10:
clrscr();

gotoxy(10, 10);
printf("Enter Nominal Potential Productivity MD percent

\n\n");
printf(" Percent MD for tests; ");
scanf("%f",&PCNT[0]);
printf("\n Please be consistent with TPFMQA input values)\n");
printf(" Percent MD for QA:
scanf("%f",&PCNT[l]);
printf(" Percent MD for Rework: ");
scanf("%f",&PCNT[2]);

break;
case 11:

clrscr();
gotoxy (10, 10)

printf("Enter new Size of project (KDSI): ");

scanf ("%d", &KDSI [0]);
break;

default:
donel = 1;

/* switch choice 1 *
switch (mode)

case 1:
expl = 1.05;
exp2 - 0.38;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2:
expl = 1.12;
exp2 = 0.35;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 3:
expl = 1.20;

119

exp2 = 0.32;
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);

break;

/* Nominal productivity is one of 3 variables passed into ~
/* the simulation model that need algorithmic calculations. *
/* This function will be discussed in detail below *
fptr(23] - prod(PCNT,results[0j,results[2],KDSI);

1/* while donel *

/* This function gives the user the opportunity to view current *
/* values assigned to the COCOMO 15 cost drivers and make changes *
/* if necessary. All cost drivers are defaulted to 1.00. */

void icocorno-in(float *rate,float *EAFl,int done3,char *fnamel)

/* rate is an array which hold the values for determining EAF for COCOMO ~
mnt choice,i;
mnt CDl, CD2,CD3,CD4,CD5, CD6,CD7, CD8,CD9, CD10, CD11,CD12,CD13,CD14, CDl5;

/* clears screen and displays the 15 cost drivers and values *
while (!done3)

clrscro;
printf("
printf(" INTERMEDIATE LEVEL COCOMO MODEL INPUTS \n");
printf (" for %s \nn,fnamel);
printf("
printf (" 1. RELY: %1.2f\n",rate[0]);
printf (" 2. DATA: %1.2f\n",rate[1]);
printf (" 3. CPLX: %1.2f\n",rate[2]);
printf (" 4. TIME: %l.2f\n",rate[3]);
printf (" 5. STOR: %1.2f\n",rate[4]);
printf (" 6. VIRT: %1.2f\n",rate[5]);
printf (" 7. TURN: %1.2f\n",rate[6]);
printf (" 8. ACAP: %1.2f\n",rate[7]);
printf (" 9. AEXP: %1.2f\n",rate[8]);
printf(" 10. PCAP: %1.2f\n",rate[9]);
printf(" 11. VEXP: %1.2f\n",rate[10]);
printf(" 12. LEXP: %1.2f\n",rate(11]);
printf(n 13. MODP: %1.2f\n",rate(12]);
printf(" 14. TOOL: %1.2f\n",rate[13]);
printf (" 15. SCED: %1.2f\n\n",rate[14]);
printf (" 16. Press (16 or 0] when entries are

complete. \n\n");

/* allows user to select one of the above cost drivers by number ~
/* using the case statments the program calls specific pop-up */
/menus for the user to select specific values from and return ~

/* to display screen to see changes. */
printf(n Select Cost Driver and press [Enter]: ;

scanf ("%d", &choice);
switch (choice)

case 1:
CD1 - wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl, TRUE);
switch (CD1)

case 0:
break;

120

case 1:
rate(0) = 0.75;
break;

case 2:
ratetO] = 0.88;
break;

case 3:
rate[0] = 1.00;
break;

case 4:
rate[0J = 1.15;
break;

case 5:
rate[0] = 1.40;
break;

break;
case 2:

CD2 = wn popup(0, 5, 15, 50, 10, wat, bat, &intelc2, TRUE);
switch (CD2)

case 0:
break;

case 1:
rate[1] = 0.94;
break;

case 2:
rateti] - 1.00;
break;

case 3:
rate(1] = 1.08;
break;

case 4:
rate[1] = 1.16;
break;

break;
case 3:

CD3 - wn popup(0, 5, 15, 50, 10, wat, bat, &intelc3, TRUE);
switch (CD3)

case 0:
break;

case 1:
rate[2] = 0.70;
break;

case 2:
rate[2] = 0.85;
break;

case 3:
rate f2] - 1.00;
break;

case 4:
rate[2] - 1.15;
break;

case 5:
rate(2] -1.30;
break;

case 6:

121

rate(2] = 1.65;
break;

break;
case 4:

CD4 - wn popup(0, 5, 15, 50, 10, wat, bat, &intelc4, TRUE);
switch (CD4)

case 0:
break;

case 1:
rate[3) = 1.00;
break;

case 2:
rate(3] = 1.11;
break;

case 3:
rate(3] = 1.30;
break;

case 4:
rate(3] = 1.66;
break;

break;
case 5:

ODS = wn popup(0, 5, 15, 50, 10, wat, bat, &intelc5, TRUE);
switch (CfD5)

case 0:
break;

case 1:
rate[4] -1.00;
break;

case 2:
rate[4] - 1.06;
break;

case 3:
rate(4] - 1.21;
break;

case 4:
rate(41 - 1.56;
break;

break;
case 6:

CD6 - wn popup(0, 5, 15, 50, 10, wat, bat, &intelc6, TRUE);
switch (CD6)

case 0:
break;

case 1:
rate(5] - 0.87;
break;

case 2:
ratetS] - 1.00;
break;

case 3:
rate(5J = 1.15;

122

break;
case 4:

rate[5] = 1.30;
break;

break;
case 7:

CD7 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelc7, TRUE);
switch (CD7)

case 0:
break;

case 1:
rate[6] = 0.87;
break;

case 2:
rate[6] = 1.00;
break;

case 3:
rate[6] = 1.07:
break;

case 4:
rate[6 = 1.15;
breal,

break.
case 8:

CD5 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc8, TRUE);
-witch (CD8)
I
case 0:

break;

case 1:
rate[7] = 1.46;
break;

case 2:
rate[7] = 1.19;
break;

case 3:
rate(7] = 1.00;
break;

case 4:
rate[7] = 0.86;
break;

case 5:
rate[7] = 0.71;
break;

break;
case 9:

CD9 - wn_popup(O, 5, 15, 50, 10, wat, bat, &intelc9, TRUE);
switch (CD9)

case 0:
break;

case 1:
rate(8] = 1.29;
break;

123

case 2:
rate(8] = 1.13;
break;

case 3:
rate[8] = 1.00;
break;

case 4:
rate[8] = 0.91;
break;

case 5:
rate[8] = 0.82;
break;

break;
case 10:

CD10 = wn popup(0, 5, 15, 50, 10, wat, bat, &ir.telclO, TRUE);
switch (CDI0)

case 0:
break;

case 1:
rate[9] = 1.42;
break;

case 2:
rate[3] = 1.17;
break;

case 3:
rate[9] = 1.00;
break;

case 4:
rate[9] - 0.86;
break;

case 5:
rate[9] = 0.70;
break;

break;
case 11:

CD11 - wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcll, TRUE);
switch (CD11)f
case 0:

break;

case 1:
rate[10] = 1.21;
break;

case 2:
rate(10] - 1.10;
break;

case 3:
rate[10] - 1.00;
break;

case 4:
rate(10] = 0.90;
break;

break;
case 12:

124

CD12 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcl2, TRUE);
switch (CD12)
f
case 0:

break;

case 1:
rate[ll] = 1.14;
break;

case 2:
rate[ll] = 1.07;
break;

case 3:
ratell] = 1.00;
break;

case 4:
rate[ll] = 0.95;
break;

break;
case 13:

CD13 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcl3, TRUE);
switch (CD13)
f

case 0:
break;

case 1:
rate[12] = 1.24;
break;

case 2:
rate(121 = 1.10;
break;

case 3:
rate[12] = 1.00;
break;

case 4:
rate[12] = 0.91;
break;

case 5:
rate[12] = 0.82;
break;

break;
case 14:

CD14 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcl4, TRUE);
switch (CDI4)

case 0:
break;

case 1:
rate[13] = 1.24;
break;

case 2:
rate[13] = 1.10;
break;

case 3:
rate(13] - 1.00;
break;

125

case 4:
rate[13] = 0.91;
break;

case 5:
rate(13] = 0.83;
break;

break;

/* for the schedule cost driver need both the EAF value */
/* but also the actual percent of schedule compression */
/* or expansion for later COCOMO calculations. */

case 15:
CD15 = wnpopup(0, 5, 15, 50, 10, wat, bat, &intelcl5, TRUE);
switch (CD15)

case 0:
break;

case 1:
rate[14] = 1.23;
EAFI[0] = 0.75;
break;

case 2:
rate[14] = 1.08;
EAF1[0] = 0.85;
break;

case 3:
rate[14] = 1.00;
break;

case 4:
rate(14] = 1.04;
EAFI[0] = 1.30;
break;

case 5:
rate(14] = 1.10;
EAF1[0] = 1.60;
break;

break;
default:

done3 = 1;
break;

/* while done3 */

/' This function saves all of the current data for each project */
/* under a specific name specified by the user */

void file save(float *DSMI,float *cdrate,float *PCNT,char *fnamel,float EAF,int
*KDSI,int mode, float mfl)

if ((fout = fopen(fnamel,"wb"))=NULL)

fprintf(stderr,"Unable to open file %s \n",fnamel);

126

else

printf ("\n\n\nSaving.................. %s\n\n\ri\n", fnamel);
printf("\n\n\nSaving.................. %s\n",fnamel);
fwrite((void *)DSMI,26 * sizeof(float),l,fout);
fwrite((void *)KDSI,sizeof(int),l,fout);
fwrite((void *)&EAF,sizeof(float),l,fout);
fwrite((void *)cdrate,15 * sizeof(float),l,fout);
fwrite((void *)PCNT,3 * sizeof(float),l,fout);
fwrite((void *)&mode~sizeof(int),l,fout);
fwrite((void *)&mfl,sizeof(float),l,fout);
fclose (fout);

* 7* This function provides the avenu3 to interface the output *
1* variables from this program into the simulation model via a
/* text file and pass certain other variables to the OUTPUT2 */
/* program via a binary file for reporting estimates and actual *
/* results and error rates. */

void file pass(float TOThT1,float TOTMD2,float TDEVl,float TDEV2,int *KDSI,int
*KDS12, float *DSMI,float *DSM12, float *PCNT, float *PCNT2)

FILE *fpout;
mnt loop_lim;
float factor[7], factor2[4], TVALS[2], TVALS2[2];
long 11,12;

/* need to change to long, once multiplied by 1000 *
/* size could be out of integer range. *
11 = KDSI[0]*1000.0;

12 = KDS12[01*1000.0;

/* factor and factor2 arrays contain inputs the user
7* enters to control adjustment factors in data and *
/* the man-day perce. age totals for testing, QA, and *
/* rework to be passed to the iterative loop program ~
/* for use in updating the nominal productivity *

factor[G] =(PCNT[0]+PCNT[l]+PCNT[2]);

factor2(0) (PCNT2(0]+PCNT2El]+PCNT2[21);
KDSI(11 = 0;
KDS12[11= 0;
7* easier to pass as arrays ~
TVALS[0] - TOTMDl;
TVALS(1] = T!ZVl;

TVALS2(0] = TOTMD2;
TVALS2[1] TDEV2;

clrscro; -

gotoxy(10,3);
printf ("The following entries are START DATE and WORK FORCE CEILING

entries\n")
gotoxy(10,4);
printf ("for the purpose of several experiments that are outside the scope

of\n");
gotoxy(10,5);
printf ("this thesis.\n");

got oxy (10, 8)

127

printf ("Enter the START DATE for project 1:)
scanf("%f",&factor(5]))
got oxy (l0, 10) ;
printf ("Enter the START DATE for project 2: ;
scanf ("%f", &factor2 [3]);
gotoxy(10, 12);
printf("Enter the WORK FORCE CEILING that applies to both projects:)
scanf("%f",&factor(6]);

/* Writes to textfile EXAMPLE.DNX *

fprintf(textfile,"C RJBDSI(2)=%ld\n", 12);
fprintf(textfile,"C TOTDI(1)=%l.O\n, T1A2);)
fprintf(textfile,"C TOTMD1(2)=%5.0f\n", TVALS2[0]);
fprintf(textfile,"C TODI()=%5.f\n", TVALS[]);
fprintf(textfile,"C TDEV1(2)=%5.Of\n", TVALS2[l3);
fprintf(textfile,"C INDST1()=%5.2f\n", DVASI(0);
fprintf(textfile,"C INUDST(2)=%5.2f\n", DSMI2[OD;
fprintf(textfile,"C ANDPST(2)=%5.2f\n", DSMI1[0);
fprintf(textfile,"C ADMPPS(2)=%5.2f\n", DSMI2[1]);
fprintf(textfile,"C HIREDY(2)=%5.2f\n", DSM1E21]);
fprintf(textfile,"C HIREDY(2)=%5.2f\n", DSMI2[2]);
fprintf(textfile,"C AVET(1)-%5.2f\n", DSM12[2]);
fprintf(textfile,"C AVEMPT(2)=%5.2f\n", DSMI2(31);
fprintf(textfile,'C TREPIT(2)=%5.2f\n",. DSM12[]);
fprintf(textfile,'C TRPNHR(2)=%5.2f\n", DSMI[4);
fprintf(textfile,"C ASIMDY(1)=%5.2f\n", DSM12[4]);

fprintf(textfile,"C ASIMDY(2)=%5.2f\n", DSMI[5]);

fprintf(textfile,"T TNERPl=%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",
DSMI[6J,DSMI[7],DSMI[8],DSMI[9],DSMI(10],DSMI(1l]);

fprintf(textfile,"T TNERP2=%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",
DSM12t61,DSMI2[71,DSMI2[8],DSMI2[91,DSMI2[10],DSM12[11]);

fprintf(textfile,"T TPFMQ1=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%5.3f %5.3f 0\n", DSMI[12] ,DSMI(13] ,DSMI[14] ,DSMI(152,
DSMI[16),DSMI[17],DSMI(18],DSMI[19],DSMI[20],DSMI[21]);

fprintf(textfile,"T TPFMQ2=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%5.3f %5.3f 0\n", DSM12[12],DSMI2(13],DSMI2[14],DSMI2[151,
DSM12[16],DSMI2[17],DSMI2(18],DSMI2[l1],DSMI2[20],DS14I2[21]);

fprintf(textfile,"C DEVPRT(l)=%5.2f\n", DSMI(22]);
fprintf(textfile,"C DEVPRT(2)=-%5.2f\n", DSM12[22]);

fprintf(textfile,nC DSIPTK(1)=%5.2f\n", DSMI[23]);
fprintf(textfile,"C DSIPTK(2)-%5.2f\nn, DSM12[23]);

fprintf(textfile,"C STRTDT(1)=%5.2f\n", factor(5]);
fprintf(textfile,"C STRTDT(2)-%5.2f\n", factor2[3]);
fprintf(textfile,"C NCLTWF=%5.2f\nn, factor[6]);
fclose (textfile);

/* The following user entries are requested here because *
/* it is just prior to running the simulation model. *
/* They deal directly with the iterative loop process ~
/ * The requests dictate how accurate the user wishes to ~
/* make the results, how many iterations of the loop should *
/* be run and an avenue for the user to build fat (safety factor) *
/* into the project or prevent the model from doing so. *

/* If the need for manual operation of the iterative loop *
/* process is necessary I would ask the user one additional *
/* question in this series. If the the user wished a manual or
/* automatic loop process. Then label it as a flag and pass it ~
/* in the binary file to the the testio2 p':ogram. In that *

128

/* program is where I would create the manual system. */

clrscro;
gotoxy (10, 3);
printf ("The following entries are percentages used to prevent the model\n");
gotoxy(10,4);
printf ("from building too much fat into the effort variable in the
project.\n");
gotoxy (1-, 5) ;
printf("In essence these factors simulate the managers responsibility not
to\n");
gotoxy (10, 6);
printf("let the productivity lag.\n");
gotoxy (10, 8) ;
printf("Enter the Effort adjustment factor in project 1 as a percent: ");
scanf("%f",&factor[l]);
gotoxy(l0, 10);
printf("Enter the Effort adjustment factor in project 2 as a percent: ");
scanf("%f",&factor2[l]);
gotoxy (10, 12) ;
printf("Enter the Schedule adjustment factor in project 1 as a percent: 1;
scanf("%f",&factor[2]);
gotoxy (10, 14) ;

printf("Enter the Schedule adjustment factor in project 2 as a percent:
");

scanf ("%f",&factor2[2]);
gotoxy (10, 18) ;
printf("The following entries allow you to choose the accuracy level ad\n);
gotoxy (10, 19) ;
printf("limit the number of loops the model will run before completion.\n");
gotoxy (10, 21) ;
printf("Enter the accuracy level for Effort as a percent: ");
scanf("%f",&factor[3J);
gotoxy (10, 23) ;
printf("Enter the accuracy level for Schedule as a percent: ");
scanf("%f",&factor[4]);
gotoxy(10,25);
printf("Enter the limit of the maximum number of loops the model will do:

") ;

scanf ("%d", &loop-lim);

/* Binary output file for use by output2 */

if ((-pout = fopen("outfile2.dnx","wb"))==NULL)

fprintf(stderr,"Unable to open file %s \n","outfile2.dnx");

else

fwrite((void *) DSMI,26 * sizeof(float),l,fpout);
fwrite((void *) DSMI2,26 * sizeof(float),l,fpout);

fwrite((void *) KDSI,2 * sizeof(int),l,fpout);
fwrite((void *) KDSI2,2 * sizeof(int),l,fpout);

fwrite((void *) TVALS,2 * sizeof(float),l,fpout);
fwrite((void *) TVALS2,2 * sizeof(float),l,fpout);

fwrite((void *) factor,7 * sizeof(float) ,l,fpout);
fwrite((void *) factor2,4 * sizeof(float),l,fpout);
fwrite((void *) &looplim,sizeof(int) ,l,fpout);
fclose (fpout);

129

/* Part of the calculation for Nominal Productivity requires */
/* interpolation. This function accepts staff size variable */
/* and returns communication overhead factor for use in determining */
/* Nominal Productivity. */

float interp(float stfsize)

float covhd;

if ((stf size >= 0) && (stf size <= 5))

covhd = (((stf size-0)* .015)/5);

if ((stf size > 5) && (stf size <= 10))

covhd = (((stf size-5)* .045)/5) +.015;

if ((stfsize > 10) && (stfsize <= 15))

covhd = (((stf size-10)* .075)/5) + .06;

if ((stf size > 15) && (stf size <= 20))

covhd = (((stfsize-15)* .105)/5) + .135;

if ((stfsize > 20) && (stf size <= 25))

covhd = (((stf size-20)* .135)/5) + .24;

if ((stfsize > 25) && (stfsize <= 30))

covhd = (((stfsize-25)* .165)/5) + .375;

if (stf size >= 30)

covhd = .54;

return covhd;

/* This function does the Nominal Productivity calculations */
/* TOTMDI - Effort passed from main function in man-days */
/* TDEV2 - Schedule in months not days! */
/* PCNT - array from main function which passes %Testing,%QA */

and %Rework for man-days */
/* MM - Effort in man-months */
/* stf size - Average Staff Size = MM/TDEV2 */
/* DEVMD - Development man-days */
/* ADP - Actual Development Productivity */
/* covhd - Communication Overhead */
/* product - Nominal Productivity */

float prod(float *PCNT,float TOTMD1,float TDEV2,int *KDSI)

float MM, stfsize,DEVMD,ADP,covhd;
float product;

MM - TOTMDI/19;
stf size - MM/TDEV2;

130

DEVMD - (l-(PCNT[01+PCNT(lI1+PCNT(2]))*TOTMD1;
ADP - (KDSI[0] - 1000.0) /DEVMD;
covhd - interp(stf size); /* call interpolation function *
product - ADP/(0.6 * (l.0-covhd));
return product;

/* This function completes COCOMO calculations for input into ~
/* simulation model */
/* result array is used to hold man-day and schedule results *
/* EAFi contains the percent to multiply TDEV by from c-ost driver 15 *
/* mfl, expi and exp2 are the coefficients and exponents passed ~
/* in from main function */

void calc(float *result~int *KDSI~float *EAFl,float *cdrate,float mfl,float
expl, float exp2)

mnt i;
float EAF; /* Estimated Adjustment Factor ~
EAF = 1.00;
for (i=0;i<15;i++)

EAF *- cdrate~i]; /* Calculate the EAF by multiplying each *
/* co3t driver by one another *

/* Total man-days calculation *
result[01 = mfl * (pow(KDSI(0],expl)) * 19.0 * EAF;

/* if Cost driver 15 (schedule) is nominal then calculations *
/* are straight forward. If not you must divide the man-days *
/* by cdrate(14] or calculate total man-days as if schedule *
/was nominal. */

if (EAFlEOI != 1.00)

result(l] = 2.5 * pow(((result(0]/19.0)/cdrate(14]),exp2) * EAFl[0]*
19.0;

result[2] = 2.5 * pow(((result(0J/cdrate[14])/19.0),exp2) * EAFitO];

else

result~l] = 2.5 * pow((result[0]/1 9 .0),exp2) *19.0;

result[2] = 2.5 * pow((result[0]/19.0),exp2);

result[3] - EAF;
return;

/* Small function that simply initializes all the *
/* cost drivers to 1 */

void initial(float *cdrate)

int i;
for(i=0;i < 15; i++)

cdrate[i] - 1.00;

return;

131

/* Fuction to accept initial project variable entries for simulation model */
void dsm in(float *DSMI, float *PCNT)

int i;

/* Front end; allows user to make necessary inputs for the */
/* Dynamic Simulation Model; Inputs appear one at a time and */
/* there must be an entry for each variable; all inputs will */
/* be stored in an array DSMI */
clrscro;
printf("
printf(" * DYNAMIC SIMULATION MODEL INPUTS *\n");
printf (" **)
printf(" Input the following: \n\n");
printf(" 1. Initial Under Staffing Level Factor: ");
scanf("%f",&DSMI[0]);
printf(" 2. Average Daily Manpower per Staff Member: ");
scanf ("%f", &DSMI [(]);
printf(" 3. Hiring Delay: ");
scanf("%f",&DSMI[2]);
printf(" 4. Average Employment Time: ");
scanf ("%f",&DSMI[3]);
printf(" 5. Training Overhead: ");
scanf ("%f",&DSMI [4]);
printf (" 6. Average Assimilation Delay: ");
scanf("%f",&DSMI(5]);
printf(" 7. Error Rate (Must enter 6 input values): \n");
for(i=0; i < 6; i++)

printf (" Error rate[%d]: ",(i+l));
scanf("%f",&DSMI[i+6]);

printf(" 8. Planned Fraction of Manpower for QA \n");
printf(" (Must enter 10 input values): \n");
for(i-0; i < 10; i++)

printf(" Manpower for QA[%d]: ", (i+l));
scanf("%f",&DSMI[i+12]);

printf(" 9. DEVPRT: ");
scanf("%f",&DSMI[22]);
printf(" 10. Nominal Potential Productivity Man Day percent

inputs: \n\n");
/* Following entries are necessary for above productivity calculation */

printf(" Percent MD for tests: ");

scanf("%f",&PCNT[0]);
printf("\n (Please be consistent with TPFMQA inputvalues)\n");

printf(" Percent MD for QA:
scanf("%f",&PCNT[I]);
printf(" Percent MD for Rework: ")
scanf("%f",&PCNT[2]);

/* Fuction to accept initial project variable entries for COCOMO */
void como in(int *KDSI,char *fnamel)

char stringl[25];

/* Allows user to make necessary inputs for the */
/* COCOMO Model; Inputs appear one at a time and */
/* there must be ai, entry for each variable */

132

clrscr(;
printf("*
printf(" * COCOMO MODEL INPUTS *\n");

printf("
printf(" Input the following: \n\n");
printf(" 1. Estimated Project Size in KDSI: ");
scanf("%d",&KDSI[0]); /* string gets KDSI value */

printf(" 2. Enter the Project Name: ");
scanf("%s",&stringl); /* string gets project name */

strncpy(fnamel, stringl, 8); /* since dos only recognizes the first */
/* 8 characters fnamel takes first 8 */
/* characters in stringl */

stringl[8] = '\0'; /* resets stringl to null set so next */
/* project name if short will not contain */
/* characters previously resident in stringl */

strcat(fnamel,".prf"); /* automatically tags all project names
/* with .prf to easily recognize projects */

void main()

/* Declarations */

int i, done=0,donel=0, done3=0, done5=0, done6=0, done7=0;
int sel, sell, sel2, sel3, sel4, sel5, sel6;
int mode, mode2;
int projectl = 0, project2 = 0;
int KDSI[2], KDSI2(2];

float EAFl[I], EAF2[l;
float cdrate(15], DSMI[26], PCNT[3],results[4];
float cdrate2(15], DSMI2[26], PCNT2[3],results2[4];
float mfl, mf2, expl, exp2;

char fnamel[13];
char fname2[13];
char newname[13];
char string[25];
char stringl[251;

int ch, basic;

/* creates textfile which is interface with simulation model */
textfile - fopen("simtwo.DNX","w");

/* initializes scedule cost driver to 1 for both projects */
EAFI[0] - 1.00;
EAF2[o = 1.00;

/* bat is the boarder attribute for the pop-up window */
/* sets background to blue and boarder to white */
bat - v setatr(BLUE,WHITE,0,0);

"I wat is the window attribute for the pop-up window */
* sets background to blue and text to white */

133

wat - v setatr(BLUE,WHITE,0,0);

/* this while statement gets program started always initiated on
while (!done6)

clrscro; /* pop-up initial menu ~
/* allows uger to go to main menu
/* create a new project or EXIT */

sel = wn_popup(0, 5, 10, 55, 10, wat, bat, &intelc, TRUE);

switch (sel)

/* SELECT PROJECT FILES FROM DISK AND EXECUTE SIMULATION MODEL *
case 1: /* go to Main Menu ~
done 5=0;
while (!done5)

clrscro; /* Main Menu will allow user to ~
/* list, select, run simulation *
/* or exit this menu

sel2 - wn-popup(0, 5, 10, 55, 12, wat, bat, &intelc0, TRUE);

switch (sel2)

/* PROJECT 1 RETRIVAL FROM DISK *
case 1:

filelisto; /* calls function to list all *.prf files *
/user can look at list and enter file name

printf("\n\n:> Enter project filename:)
scanf("%s",&fnamel);
/* if name of file is mis-entered program goes back to ~
/* main menu */
if ((fin = fopen(fnamel,"rb")) -NULL)

fprintf (stderr, "Unable to open file %s to read\n",fnamel);
continue;

/* read in the data of the selected filename *
fread((void *)DSMI,26 * sizeof(float),1,fi-n);
fread((void *) DSI,sizeof(int),l,fin);
fread((void *)&resultst3],sizeof(float),l,fin);
fread((void *)cdrate,15 * sizeof(float),l,fin);
fread((void *)PCNT,3 * sizeof (float),1, fin);
fread ((void *)&mode, sizeof (int), 1, fin);
fread((void *)&mfl,sizeof(float),l,fin);
f close (fin)
1* re-intialize *
donel - 0;
projecti - 1;

/* function described above which allows user to display *
/on screen the variables for the simulation model less *

/* the COCOMO variables */
model-in(DSMI,PCNT,KDSI,results,mode,

fnamel,EAFl,cdrate,donel,mfl);

if (results [3] =1.00)

clrscro; /* gives user option to continue ~
/* using basic model or use intermediate *

134

sel3 - wn popup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch (sel3)

case 1: /* user selected basic model */
basic = 1;
initial(cdrate); /* Basic model EAF values must */
break; /* all be 1.00. This sets all */

/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */

basic = 0;
initial(cdrate);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo in(cdrate,EAF1,done3,fnamel);
break;

} /* switch sel3 */
/* if */

else /* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */
basic = 0;
icocomo in(cdrate,EAFl,done3,fnamel);

clrscr();
/* pop-up menu for user to select COCOMO mode */

mode = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);

switch (mode)

case 1: /* Organic mode */
if (basic 1)
f

mfl = 3.2; /* sets coefficient and exponents */

else

mfl = 2.4;

expl - 1.05; /* for man-days calculation */
exp2 = 0.38;
/* function that actually does the COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached mode */
mfl - 3.0;
expl - 1.12;
exp2 - 0.35;

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 3: /* Embedded mode */
if (basic != 1)

mfl = 3.6; /* sets coefficient and exponents */

else

mfl - 2.8;

expl = 1.20;
exp2 = 0.32;

135

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

1/* switch mode ~
/* allows user to save current datafile under the same name

/or save the same or manipulated data under a new name */
sel4 - wn-popup(0, 5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (sel4)

case 1: /* save in same file *
file-save (DSMI, cdrate, PCNT, fnamel,,

results[3],KDSI,mode,mfl);
break;

case 2: /* if you are changing the name of the file *
clrscr o;
gotoxy(12,l0); /* enter new name
printf ("Enter the new project filename: n);
scanf("%s",&string);

7* Program lets user enter more than 8 characters *
7* for filename. This copies first 8 characters ~
/* into nem filename variable */

strncpy(fname2, string, 8);
string[8] = '\O'; 1* resets string to null ~
strcat(fname2,n.prf") ; /* automatically adds ".prf" *

7* writes new file to disk *
fnew -fopen(fname2,"wb");
fwrite((void *)DSMI,26 * sizeof(float),l,fnew);
fwrite((void *)KDSI,sizeof(int),l,fnew);
fwrite((void *)&results(3],sizeof(float),l,fnew);
fwrite((void *)cdrate,15 * sizeof(float),l,fnew);
fwrite((void *)PCNT,3 * sizeof(float),l,fnew);
fwrite((void *)&mode,sizeof(int),l,fnew);
fwrite((void *)&mfl,sizeof(float),l,fnew);
fclose (fnew);

break;

/* PROJECT 2 RETRIVAL FROM DISK *
case 2:

filelisto; /* calls function to list all *.prf files *
/user can look at list and enter file name ~

printf("\n\n:> Enter project filename:)
scanf("%s",&fname2);

7* if name of file is mis-entered program goes back to ~
7* main menu *
if ((fin - fopen(fname2,"rb"))=-NULL)

fprintf(stderr,"Unable to open file %s to read\n",fname2);
continue;

7* read in the data of the selected filename *
fread((void *)DSM12,26 * sizeof(float),l,fin);
fread ((void *)KDS12, sizeof (int) ,l, fin);
fread((void *)&results2(3],sizeof(float),l,fin);
fread((void *)cdrate2,15 * sizeof(float),l,fin);
fread((void *)PCNT2,3 * sizeof(float),l,fin);
fread((void *)&mode2,sizeof(int),1,fin);
fread((void *)&mf2,sizeof(float),l,fin);

136

fclose (fin);
/* re-intialize */
donel = 0;

project2 = 1;

/* function described above which allows user to display */
/* on screen the variables for the simulation model less */
/* the COCOMO variables */
modelin(DSMI2,PCNT2,KDSI2,results2,mode2,

fname2,EAF2, cdrate2,donel, mf2);

if(results2[3]==l.00)

clrscro; /* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch (sel3)

case 1: /* user selected basic model */
basic = 1;
initial(cdrate2); /* Basic model EAF values must */
break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */

case 2: /* user selected intermediate model */
basic = 0;
initial(cdrate2);
/* Displays cost driver screen; allows user to */

/* set cost drivers to desired level */
icocomo_in(cdrate2,EAF2,done3,fname2);
break;

1 /* switch sel3 */
/* if */

else /* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */
basic - 0;
icocomo in(cdrate2,EAF2,done3,fname2);

clrscr);

/* pop-up menu for user to select COCOMO mode */
mode2 - wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);

switch (mode2)

case 1: /* Organic mode */
if (basic 1= 1)

mf2 = 3.2; /* sets coefficient and exponents */

else

mf2 = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;
/* function that actually does the COCOMO calculations *
calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);
break;

case 2: /* Semi-detached mode */

137

mf2 = 3.0;
expl = 1.12;
exp2 = 0.35;

calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);
break;

case 3: /* Embedded mode */
if (basic != 1)

mf2 3.6; /* sets coefficient and exponents */

else

mf2 = 2.8;

expl = 1.20;
exp2 - 0.32;
calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);
break;

/* switch mode */

/* allows user to save current datafile under the same name */
/* or save the same or manipulated data under a new name */
sel4 = wn-popup(0, 5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (sel4)

case 1: /* save in same file */
file save(DSMI2,cdrate2,PCNT2, fname2,

results2[3],KDSI2,mode2,mf2);
break;

case 2: /* if you are changing the name of the file */
clrscro;
gotoxy(12,10); /* enter new name
printf("Enter the new project filename: ");
scanf("%s",&string);

/* Program lets user enter more than 8 characters */
/* for filename. This copies first 8 characters */
/* into nem filename variable */

strncpy(newname, string, 8);
string[8] - '\0'; /* resets string to null */
strcat(newname,".prf"); /* automatically adds ".prf" */

/* writes new file to disk */
fnew2 = fopen(newname,"wb");
fwrite((void *) DSMI2,26 * sizeof(float),l,fnew2);
fwrite((void *) KDSI2,sizeof(int),l,fnew2);
fwrite((void *) &results2[3],sizeof(float),l,fnew2);
fwrite((void *) cdrate2,15 * sizeof(float),l,fnew2);
fwrite((void *) PCNT2,3 * sizeof(float),l,fnew2);
fwrite((void *) &mode2, sizeof (int) ,i, fnew2);
fwrite((void *) &mf2, sizeof(float),l,fnew2);
fclose(fnew2);

break;

/* RUNS TWO PROJECT DYNAMIC SIMULATION */
case 3:

/* This is an error checking routine to ensure */
/* both projects are loaded before executing the */

138

/* simulation model */
if (projectl) /* projectl is a flag */

/* when 1 projectl is loaded */
/* when 0 projectl is not loaded */

if (project2) /' project2 is a flag */
/* when 1 project2 is loaded */

/* when 0 projectl is not loaded */

/* Both projects are loaded, save files and execute simulation */
done5 - 1;
done6 = 1;
file_pass(results(0],results2[0],results[l],
results2[l],KDSI,KDSI2,DSMI,DSMI2,PCNT,PCNT2);

else

/* Only project 1 is loaded, will not proceed */
clrscr(;
gotoxy(10,10);
printf("You have not selected Project 2.\n");

gotoxy(l0,11);
printf("Both projects must be selected to run

simulation.\n");
gotoxy(10, 15) ;
printf("Press any key to continue \n");
getcho;

else

if (project2)

/* Only project 2 is loaded, will not proceed */
clrscr();

gotoxy(10,10);
printf("You have not selected Project 1.\n");

gotoxy (10, 11);
printf("Both projects must be selected to run

simulation.\n");
gotoxy (10,15);
printf("Press any key to continue \n");
getcho;

else

/* Neither project is loaded, will not proceed */
clrscr();
gotoxy(10,10);
printf("You have not selected Project 1 or Project 2.\n");

gotoxy (10, 11) ;
printf("Both projects must be selected to run

simulation.\n");
gotoxy (10,15);

printf("Press any key to continue \n");
getcho;

break;

/* EXITS CURRENT MENU TO PREVIOUS MENU (INITIAL MENU) */

139

case 4:
done5 = 1;
done6 - 0;
break;

} /* sel2 */
/* while done5 */

break;

/* CREATE NEW PROJECT FILES AND EXECUTE SIMULATION MODEL WHEN COMPLETE */
case 2:

wn init(; /* initialize a window for text entry */
w4 = wnopen(0,5,10,58,10,wat,bat); /* open window w4; similar */

/* to opening a file */
/* 5 is starting row; 10 is starting column; 58 is characters wide */
/* second 12 is number of rows; wat is the window attribute and */
/* bat the boarder attribute */

if (!w4) exit(1);

wn printf(w4," \n ******************* IMPORTANT ************************
wn-printf(w4," \n\n In order to load NEW projects you must enter\n");
wnprintf(w4," input data for both COCOMO and the Dynamic Simulation.\n");
wn_printf(w4," There are two forms on which all data must be entered.\n");
wn printf(w4," Please enter the data as accurately as possible.\n\n\n\n");
wnprintf(w4," Press [ANY KEY] to continue...") ;

vgetch();
wn close(w4);
done7=0;
while (!done7)

clrscr();
/* Pop-up window for New Project selection */
sel6 = wnpopup(0, 5, 15, 55, 10, wat, bat, &intelc25, TRUE);
switch (sel6)

/* NEW PROJECT 1 ENTRIES */
case 1:

/* This function allows user to enter simulation variables */
/* into two arrays for project 1 */

dsmin(DSMI,PCNT);

/* This function allows user to enter COCOMO variables */

/* into an array and name the new projectl file */
como in(KDSI, fnamel);

clrscr();
sell = wn_popup(0, 5, 15, 55, 10, wat, bat, &intelcl9, TRUE);

/* selection of basic or intermediate COCOMO */
switch (sell)

case 1: /* user selection basic */
basic = 1;
EAFl(0] = 1.00;/* initializes schedule percent to 100 */
initial(cdrate); /* sets all cost drivers to nominal */
break;

case 2: /* user selection intermediate *1
basic = 0;
dcne3 = 0;
EAF1[0] = 1.00;/* initializes schedule percent to 100 *

initial (cdrate) ; /* sets all cost drivers to nominal *,'

140

icocomo in(cdrate,EAFl,done3,fnamel); /* allows user to set */
/* cost driver values */

break;

clrscr();

mode = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */

switch (mode)

case 1: /* Organic */
if (basic 1)

mfl = 3.2; /* sets coefficient and exponents */

else

mfl = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 3: /* Embedded */
if (basic != 1)

mfl = 3.6; /* sets coefficient and exponents */

else

mfl = 2.8;

expl = 1.20;
exp2 = 0.32;
/* calls function to do COCOMO calculations */

calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

/* calls function to do nominal productivity calculations */
/* results[0]=Total man-days; results[2]=schedule in months */
DSMIL23] - prod(PCNT,results[0J,results[2],KDSI);

/* display/edit simulation model inputs */
model in(DSMI,PCNT,KDSI,results,mode,

fnamel,EAFl,cdrate,donel,mfl);

/* save updated file automatically */
file save(DSMI,cdrate,PCNT, fnamel,results[3],KDSI,mcde,mfl);

projectl = 1; /* Flag when equal to 1 indicates prujectl
loaded */

/* this' ends the input phase and initial COCOMO

141

calculations */
/* for projectl the user will return to menu to select new
/* project2, to Display/Edit or to run simulation model */
break;

/* NEW PROJECT 2 ENTRIES */
case 2:

/* This function allows user to enter simulation variables */
/* into two arrays for project 2 */
dsm-in(DSMI2,PCNT2);

/* This function allows user to enter COCOMO variables */
/* into an array and name the new project2 file */
como-in(KDSI2,fname2);

clrscr();
sell = wnpopup(0, 5, 15, 55, 10, wat, bat, &intelcl9, TRUE);

/* selection of basic or intermediate COCOMO */
switch(sell)

case 1: /* user selection basic */
basic = 1;
EAF2[0] = 1.00;/* initializes schedule percent to 100 */
initial(cdrate2); /* sets all cost drivers to nominal */
break;

case 2: /* user selection intermediate */
basic = 0;
done3 = 0
EAF2(0] = 1.00; /* initializes schedule percent to 100 */
initial(cdrate2); /* sets all cost drivers to nominal */
icocomoin(cdrate2,EAF2,done3,fname2);/* allows user to set */

/* cost driver values */
break;

clrscr();

mode2 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */

switch (mode2)

case 1: /* Organic */
if (basic != 1)

mf2 = 3.2; /* sets coefficient and exponents */

else

mf2 = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;
/* calls function to do COCOMO calculations */
calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);
break;

case 2: /* Semi-detached */
mf2 = 3.0;
expl = 1.12;
exp2 = 0.35;
/* calls function to do COCOMO calculations */
calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);

142

break;
case 3: /* Embedded */

if (basic ! 1)

mf2 = 3.6; /* sets coefficient and exponents */

else

mf2 = 2.8;

expl = 1.20;
exp2 = 0.32;
/* calls function to do COCOMO calculations */
calc(results2,KDSI2,EAF2,cdrate2,mf2,expl,exp2);
break;

/* calls function to do nominal productivity calculations */
/* results2[0]=Total man-days; results2[21=schedule in months */

DSMI2[23] = prod(PCNT2,results2[0],results2[2],KDSI2);

/* display/edit simulation model inputs */
model-in(DSMI2,PCNT2,KD3I2,results2,mode2,

fname2,EAF2,cdrate2,donel,mf2);

/* save updated file automatically */
file-save(DSMI2,cdrate2,PCNT2,fname2,

results2[3],KDSI2,mode2,mf2);

project2 = 1; /* Flag when equal to 1 indicates project2
loaded */

/* this ends the input phase and initial COCOMO
calculations */

/* for project2 the user will return to menu to select new
/* projectl, to Display/Edit or to run simulation model */
break;

/* GO TO NEXT LEVEL MENU TO DISPLAY PROJECTS OR RUN SIMULATION */
case 3:

done = 0;
while(!done) /* New Project Menu loop */

clrscr();
sel5 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc23, TRUE);

/* New Project Menu */

switch (sel5)

case 1: /* user selected Display/Edit project 1*/
/* display or edit simulation model inputs */

model in(DSMI,PCNT,KDSIresults,mode,
fnamel,EAFl,cdrate,donel,mfl);

if(results[3]==1.00) /* checks if EAF = 1.00 */

clrscr(;/* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc2l,
TRUE);

143

switch(sel3)

case 1: /* user selected basic model */
basic = 1;
initial(cdrate);/* Basic model EAF values must */
break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */
basic = 0;
initial(cdrate); /* initialize cost drivers to 2 */

/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */

icocomo in(cdrate,EAFl,done3,fnamel);
break;

/* switch sel3 */
} /* if */
else
/* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */

basic = 0;
icocomo in(cdrate,EAFl,done3,fnamel);

clrscro;
switch (mode)/* mode at this point was previously */
/* selected and will now be routed to */
/* for proper calcualations */
{
case 1: /* Organic mode */

if (basic != 1)

mfl = 3.2; /* sets coefficient and exponents */

else

mfl = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* function that actually does the COCOMO calcuiations */
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 2: /* Semi-detached mode */
mfl = 3.0;
expl - 1.12;
exp2 = 0.35;
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

case 3: /* Embedded mode */
if (basic != 1)

mfl = 3.6; /* sets coefficient and exponents */

else

mfl = 2.8;

expl = 1.20;

144

exp2 = 0.32;
calc(results,KDSI,EAFl,cdrate,mfl,expl,exp2);
break;

} /* switch mode */
/* automatically save latest changes to file */
file save(DSMI,cdrate, PCNT, fnamel,results[3],KDSI,mode,mfl);
break;

case 2: /* user selected Display/Edit project 2*/
/* display or edit simulation model inputs */

model in(DSMI2,PCNT2,KDSI2,results2,mode2,fname2,EAF2,cdrate2,donel,mf2);

if(results2[3]==1.00) /* checks if EAF - 1.00 */

clrscr();
/* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wnpopup(0, 5, 10, 50, 10, wat, bat, &intelc2l,
TRUE);

switch(sel3)

case 1: /* user se'ected basic model */
basic = 1;
initial(cdrate2); /* Basic model EAF values must*/
break; /* all be 1.00. This sets all */

/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */
basic = 0;
initial(cdrate2);
/* Displays cost driver screen;
allows user to */

/* set cost drivers to desired level */
icocomo in(cdrate2,EAF2,done3,fname2);
break;
I /* switch sel3 */

/* if */

else /* if EAF is other than 1.00 */

/* displays cost drivers values and */
/* allows user to manipulate */
basic - 0;
icocomoin(cdrate2,EAF2,done3,fname2);

clrscr();
switch (mode2)

case 1: /* Organic mode */
if (basic != 1)

mf2 = 3.2; /* sets coefficient and exponents */

else

mf2 = 2.4;

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;
/* function that actually does the COCOMO
calculations "/'

145

calc(results2,KDSI2,EAF2,
cdrate2,mf2,expl,exp2);
break;

case 2: /* Semi-detached mode */
mf2 = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results2,KDSI2,EAF2,
cdrate2,mf2,expl,exp2);
break;

case 3: /* Embedded mode */
if (basic != 1)

mf2 - 3.2; /* sets coefficient and exponents *1

else

mf2 = 2.4;

expl = 1.20;
exp2 = 0.32;
calc(results2,KDSI2,EAF2,
cdrate2,mf2,expl,exp2);
break;

/* switch mode */
/* automatically save latest changes to file */
file save(DSMI2,cdrate2,PCNT2,

fname2,results2[3],KDSI2,mode2,mf2);
break;

case 3: /* user selected to run simulation model */
if (projectl) /* If TRUE project 1 data is entered */

if (project2) /* If TRUE project 2 data is entered */

done = 1; /* allows user to exit to initial menu *,
done6 = 1;/* allows user to exit out of program *1
done7 = 1;
/* calls file pass which outputs both SIMTWO.DNX */
/* and OUTFILE2.DNX. After completion of t h i s

function */
/* exit program to DOS which calls Simulation Model

*1

filepass(results(0],results2[0],results[l],
results2[1],KDSI,KDSI2,DSMI,DSMI2,
PCNT,PCNT2);

else /* Project 1 is entered but project 2 is not */

/* prints message to screen
clrscro;
gotoxy(10,10);
printf("You have not selected
Project 2.\n");

gotoxy(10,11);
printf("Both projects must be selected t o r u n

siriulation.\n");
gotoxy(10, 15);
printf("Press any key to continue \n");
getch()

146

else /* projectl not loaded */

if (project2) /* If TRUE */
/* Project 2 is entered but project 1 is not */

/* prints message to screen
clrscro;
gotoxy(10,10);
printf("You have not selected
Project 1.\n");
gotoxy(10,11);
printf("Both projects must be selected t o r u n

simulation.\n");
gotoxy(10, 15);
printf("Press any key to continue \n");
getcho;I
else /* neither project is loaded */

/* prints message to screen
clrscro;
gotoxy(10,10);
printf("You have not selected
Project 1 or Project 2.\n");
gotoxy(10,11);
printf("Both projects must be selected t o r u n

simulation.\n");
gotoxy (10, 15)
printf("Press any key to continue \n");
getch();

break;
case 4:

done = 1; /* allows user to exit program */
done7 = 1;
break;

break;

/* while done7 */
break;

case 3:
exit(l); /* Exits program to DOS command line */

/* sel */

/* while done6 */
exit(0); /* Exits program and returns back to DOS batch file.

/* THE END of this program not project */

147

APPENDIX Z

* Author: Richard W. Smith Advisor: Prof. Abdel-Hamid **

* Program: OUTPUT2 Lang: C **

* Used Shareware <windows.h> in project environment **

/* This is one of 5 programs written and interfaced with the *
/* Dynamic Simulation Model. This particular program gathers *
/* outfile information from several files to generate reports *
/* and create an iterative loop environment for studying refinement *
/* of cost estimation. */

/* The following headers were used and needed to utilize the *
/* library functions used throughout this program. ~

#include <stdio.h>
#include <math.h>
#ilkciude <conio.h>

void file pas(float *,float *,int *,int *,float *,float *,float *,float *,int);
float prod(float, float,float,int *
float interp (float);
void cktwo(float, float,float,float, float,float, float)
void passtwo(float, float, float, float, float,float);

/* This function provides the avenue to interface the output ~
/* variables from this program into the simulation model via a
/* text file and pass certain other variables back to the OUTPUT2 *
/* program via a binary file for reporting estimates a-id actual *
/* results and error rates. *

void file pas(float *TVALS,float *TVALS2,int *KDSI,int *KDS12,float *DSMI,float
*DSM12,float *factor,float *factor2,int loop_lim)

FILE *fpout, *textfile;

/* need to change to long, once multiplied by 1000 *
/* size could be out of integer range. *
long 11,12;
11 - KDSI(0]*1000.0;
12 - KDS12[0]*1000.0;

/* input file to simulation model *
textfile - fopen("SIMTWO.DNX","w");

fp~intf (textfile, "C RJBDSI (1) %ld\n", 11);
fprintf (textfile, "C RJBDSI (2) -%ld\,n", 12);
fprintf(textfile,"C TOTMD1(l)=%5.Of\n", TVALS[O]);
fprintf(textfile,"C TOTMD1(2)=%5.Of\n", TVALS2[0]);
fprintf(textfile,"C TDEVl(l)-%5.Of\n", TVALS~l]);
fprintf(textfile,"C TDEV1(2)=%5.Of\ln", TVALS2fl]);
fprintf(textfile,"C INUDST(1)=%5.2f\n", DSMI[0]);
fprintf(textfile,"C INUDST(2)-%5.2f\n", DSMI2[0]);
fprintf(textfile,"C ADMPPS(l)-%5.2f\n", DSMI(lfl;

148

fprintf(textfile,"C ADMPPS(2)=%5.2f\n", DSM12[1]);
fprintf(textfile,"C HIREDY(1)-%5.2f\n", DSMI[2]);
fprintf(textfile,"C HIRLEDY(2)=%5.2f\n", DSM12[2]);
fprintf(textfile,"C AVEMPT(l)-%5.2f\n", DSMI[3J);
fprintf (textfile, "C AVEMPT(2)=%5.2f\n", DSM12[3]);
fprintf(textfile,"C TRPNHR(1)=%5.2f\n", DSMI(4J);
fprintf (textfile, "C TRPNHR(2)=%5.2f\n", DSM12[4]);
fprintf(textfile,"C ASIMDY(l)-%5.2f\n", DSMI(5J);
fprintf(textfile,"C ASIMDY(2)=%5.2f\n", DSM12[5]);
fprintf (textf ile, "T TNERP1-%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",

DSMI (6] ,DSMI (7] ,DSMI (8] ,DSMI [9] ,DSMI (10) ,DSMI [11]);
fprintf(textfile,"T TNERP2-%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",

DSMI2-[6),DSMI2E7],DSMI2(8],DSMI2[9],DSMI2(10],DSMI2[11J);
fprintf(textfile,"T TPFMQ1=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f

%5.3f %5.3f %5.3f 0\n", DSMI(12],DSMI(13],DSMI(14],DSMI(15],
DSMI[16],DSMI[17],DSMI[18],DSMI[19],DSMI(20],DSMI[21]);

fprintf(textfile,"T TPFMQ2=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%5.3f %5.3f %5.3f 0\n", DSM12[12],DSMI2[13],DSMI2[14],
DSM12 (15] ,DSMI2 [16] ,DSMI2 (17] ,DSmi2 [18],DSMI2 (19],
DSM12[20J,DSMI2[21]);

fprintf(textfile,"C DEVPRT(l)=%5.2f\n", DSMI(22]);
fprintf (textfile, "C DEVPRT(2)='%5.2f\nm, DSM12[22]);

fprintf(textfile,"C DSIPTK(1)=%5.2f\n", DSMI(23]);
fprintf(textfile,'C LSIPTK(2)=%5.2f\n", DSM12[23]);

fprintf(textfile,"C STR'.DT(1)=%5.2f\n", factor[5]);
fprintf(textfile,"C STRTDT(2)=%5.2f\n", factor2[3]);
fprintf (textfile, "C NCLTWF=%5.2f\n", factor[6J);
fclose (textfile);

1* Binary output file for use by output2 ~

if ((fpout = fopen("outfile2.dnx","wb"))==NULL)

fprintf(stderr,"Unable to open file %s \n","outfile2.dnx");

else

fwrite((void *) DSMI,26 * sizeof(float),l,fpout);
fwrite((void *) DSM2.26 * sizeof(float),1,fpout);

fwrite((void *) KDSI,2 * sizeof(int),1,fpout);
fwrite((void *) KDS12,2 * sizeof(int),1,fpout);

fwrite((void *) TVALS,2 * sizeof(float),1,fpout);
fwrite((void *) TVALS2,2 * sizeof (float) ,1,fpout);

fwrite((void *)factor,7 *sizeof(float),1,fpout);
fwrite((void *)factor2,4 *sizeof(float),l,fpout);

fwrite((void *)&loop_lim,sizeof(int),1,fpout);
fclose (fpout);

/This function does the Nominal Productivity calculations *
/* TOTMD1 - Effort passed from main function in man-days *
,'* TDEV2 - Schedule in months not days! */
/* PCNT - array from main function which passes %Testing,%QA *

and %Rework for man-days ,

/MM - Effort in man-months */
/* stf size - Average Staff Size =MM/TDEV2 *
/* DEVMD - Development man-days *

'~ADP - Actual Development Productivity *
/~covhd - Communication Overhead *

149

1* product - Nominal Productivity */

float prod(float pcnt,float TOTMD1,float TDEV2,int *KDSI)

float MM,stf size,DEVMD,ADP,covhd;
float product;

MM = TOTMD1/19;
stf size - MM/TDEV2;
DEVMD - (1 - pcnt)*TOTMD1;
ADP - (KDSI(0] * 1000.0) /DEVMD;
covhd - interp(stf size); /* call interpolation function ~
product - ADP/ (0.6 * (1.0-covhd));
return product;

/* Part of the calculation for Nominal Prodiuctivity requires ~
/* interpolation. This function accepts staff size variable *
/* and returns communication overhead factor for use in determining *
/* Nominal Productivity. */

float interp(float stf size)

float covhd;

if ((stf-size >- 0) && (stf-size <= 5))

covhd - (((stf-size-0)* .015)/5);

if ((stf-size > 5) && (stf size <= 10))

covhd = (((stf size-5)* .045)15) 4.015;

if ((stf-size > 10) && (stf-size <- 15))

covhd - (((stf-size-10)* .075)/5) + .06;

if ((stf-size > 15) && (stf size <- 20))

covhd - (((stf-size-15)* .105)/5) + .135;

if ((stf-size > 20) && (stf-size <- 25))

covhd - (((stf-size-20)* .135)/5) + .24;

if ((stf-size > 25) && (stf size <- 30))

covhd - (((stf size-25)* .165)/5) + .375;

if (stf-size >- 30)

covhd - .54;

return covhd;

/* This function checks Project 2 error rates to determine if *
7* error rates are within limits. only called if Project 1 */
/* meets its error rate requirements. otherwise goes to passtwo ~

150

void cktwo(float TOTMD2,float TDEV2,float md2,float time2,float oldprod,float
newprod, float * factor)

float diff,diffl;
int nurn;
FILE *results;

if (TOTMD2 >- md2) /* checks if effort estimates are greater ~
/* than actuals *

if (TDEV2 >= time2) /* checks if sked estimates are greater ~
/* than actuals *

diff =(TOTND2-md2)/md2; /* error rate for effort ~
diffl (TDEV2-time2)/time2;/* error rate for sked ~

results - fopen("REPORT,OUTn,"a"); /* open file *
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD2 CUrM'D2 ERROR TDEV2 TZJAE2

ERROR OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f

%6.2f %6.2f\n",TOTMD2,md2,diff,,
TDEV2, tixne2, diff1, oldprod, newprod);

fclose (results);

/* check to see if error rates meet requiremnets *
if ((diff =-0 && diffi <= factor[4]) 11

(diff <= factor[3] && diffi - 0) 11
(diff <= factor[3] && diffi <= factort4D))

/* opens results file to print out at bottom of *
/* report.out a reminder of availability of *
/* output data */

results = fopen ("REPORT.OUT", "a");
fprintf(results,n\n\n**** This data is available i n

REPORT.OUT ****\flh);

fprintf (results, *** Each time the model is run
REPORT.OUT will change ****\nff);

fclose (results);

/* sets cursor at (col,row) *
/* Format for output of data *

gotoxy (10, 10) ;
printf(" REPORT FORMAT CHOICE\n");
got oxy(10, 12) ;
printf(" 1 - Display results\n");

*got oxy (10, 13) ;
-printf(" 2 - Print results\n");

gotoxy (10, 14) ;
printf(" 3 - Exit\n");
got oxy (10, 16)
printf ("Enter one of the above:)
scanf("%d",&num);

switch (num)

case 1:
clrscr()

151.

exit (4); /* sends to screen via DOS *
case 2:
clrscr();
exit (3); /* sends to printer via DOS *
case 3:
exit (0); 1* exits program, but output *

/* still available in report.out file *

else /* case for effort estimate > actual, but sked *
/* actual > estimate ~

diff =(TOTMD2-md2)/md2; /* error rate for effort *
diffl =(time2-TDEV2)/time2; 1* error rate for sked ~
1* open output file */
results - fopen("REPORT.OUT", "a");
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf (results, "TOTMD2 CUMMD2 ERROR TDEV2 TIME2

ERROR OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.0f %6.Of %6.2f %6.2f

%6.2f\n", TOTMD2,md2, diff,
TDEV2, time2, diffl, oldprod, newprod);

fclose (results);

/* check to see if error rates meet requiremnets *
if ((diff -- 0 && diffl <= factor[4]) 11

(diff <- factor[3] && diffl -= 0) 11
(diff <= factor(3] && diffi <= factor[4]))

/* opens results file to print cut at bottom of *
/* report.out a reminder of availability of *
/* output data */

results - fopen("REPORT.OUT", "a");
fprintf(results,'l\n\n**** This data is available i n

REPORT.OUT ****\n"l);
fprintf (results, "**** Each time the model is run REPORT.OUT

will change ****\fn);

fclose (results);

/* sets cursor at (col,row) *
/* Format for output of data *
gotoxy(10, 10);
printf(" REPORT FORMAT CHOICE\n");
gotoxy (10, 12);
printf(" 1 - Display results\n");
got oxy (10, 13) ;
printf(" 2 - Print results\n");
gotoxy (10,14);
pzrintf(" 3 - Exit\nn);
got oxy (10, 16) ;
printf ("Enter one of the above:)
scanf ("%d", &num);

switch (num)

case 1:
clrscr ();

exit (4); /* sends to screen via DOS *
case 2:

152

clrscr(;
exit (3); /* sends to printer via DOS */
case 3:
exit (0); /* exits program, but output */

/* still available in report.out file */

else /* actual effort is > estimate effort */

if (TDEV2 >= time2) /* checks if sked estimates
are greater */

/* than actuals *1

diff = (md2-TOTMD2)/md2; /* error rate for effort */
diffl = (TDEV2-time2)/time2; /* error rate for sked */
/* open output file */
results = fopen("REPORT.OUT","a");
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD2 CUMMD2 ERROR TDEV2 TIME2 ERROR

OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.Qf %6.Of %6.2f %6.2f

%6. 2f\n", TOTMD2,md2, diff,
TDEV2, time2, diffl, oldprod, newprod);

fclose(results);

/* check to see if error rates meet requiremnets */
if ((diff =- 0 && diffl <= factor(4]) I1

(diff <= factor[3] && diffl == 0) II
(diff <= factor[3] && diffl <= factor[4]))

/* opens results file to print out at bottom of */
/* report.out a reminder of availability of */
/* output data */

results = fopen("REPORT.OUT","a ") ;
fprintf(results,"\n\n**** This data is available i n

REPORT.OUT ****\n");
fprintf (results, "**** Each time the model is run REPOF-.OUT

will change ****\n");
fclose(results);

/* sets cursor at (col,row) */
/* Format for output of data */
gotoxy(10,10);
printf(" REPORT FORMAT CHOICE\n");
gotoxy(10, 12);
printf(" 1 - Display results\n");
gotoxy(10,13);
printf(" 2 - Print results\n");
gotoxy(10,14);
printf(" 3 - Exit\n");
gotoxy(10, 16);
printf("Enter one of the above: ");
scanf("%d",&num);

switch (num)

case 1:
clrscr 0;

153

exit(4); /* sends to screen via DOS */
case 2:

clrscr()
exit(3); /* sends to printer via DOS */
case 3:
exit (0); /* exits program, but output */

/* still available in report.out file */

else /* actual effort and actual sked are > estimates */

diff = (md2-TOTMD2)/md2; /* error rate for effort */
diffl = (time2-TDEV2)/time2; /* error rate for sked */
/* open file */
results = fopen("REPORT.OUT","a");
fprintf (results,"\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD2 CUMMD2 ERROR TDEV2 TIME2 ERROR

OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n", TOTMD2,md2,diff,
TDEV2, time2, diffl, oldprod, newprod);

fclose (results) ;
/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor[4]) II

(diff <= factor[3] && diffl == 0) II
(diff <= factor(3] && diffl <= factor[4]))

/* opens results file to print out at bottom of */
/* report.out a reminder of availability of *1
/* output data */

results - fopen("REPORT.OUT","a");
fprintf(results,"\n\n**** This data is available i n

REPORT.OUT ****\n");
fprintf (results,"**** Each time the model is run REPORT.CUT

will change ****\n");
fclose (results);

/* sets cursor at (col,row) */
/* Format for output of data */
gotoxy (10, 10) ;
printf(" REPORT FORMAT CHOICE\n");
gotoxy (10, 12) ;
printf(" 1 - Display results\n");
gotoxy (10, 13);
printf(" 2 - Print results\n");
gotoxy (10,14);
printf(" 3 - Exit\n");
gotoxy(10,16) ;
printf("Enter one of the above: ") ;
scanf("%d",&num);

switch (num)

case 1:
clrscr();

exit(4); /* sends to screen via DOS */
case 2:

clrscr()
exit(3); /* sends to printer via DOS */

154

case 3:
exit (0); 1* exits program, but output ~

/* still available in report.out file *

/* This function checks Project 2 error rates to determine if *
/* error rates are within limits. Only called if P---oject 1 */
/* does not meet its error rate requirements. Does not exit program *
/* from this function */

* void passtwo(float TOTMD2,float TDEV2,float md2,float time2,float oldprod,float
newproi)

float diff,diffl;
FILE *results;

if (TOTMD2 >- md2) /* checks if effort estimates are greater *
/* than actuals */

if (TDEV2 >= time2) /* checks if sked estimates are greater ~

diff =(TOTMD2-md2)/md2; /* error rate for effort '
diffl =(TDEV2-time2)/time2; /* error rate for sked ~
results =fopen('1REPORT.OUT","a");
fprintf (results, "\n PERCENT

PERCENT PRODIJCTIVITY\nH);
fprintf (results, "TOTMD2' CUMMD2 ERROR TDEV2 TIME2 ERROR

OLD NEW\n'");
fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n1, TOTMD2,md2, diff,
TDEV2,time2,diffl,oldprod,newprod);

fclose (results);

else /* effort estimate > actual, but sked actual > estimate ~

diff =(TOTMD2-md2)/md2; /* error rate for effort *
diffl =(time2-TDEV2)/time2; /* error rate for sked ~
results - fopen("REPORT.OUT","a");
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD2 CUMM2~D2 ERROR TDEV2 TII E2 ERRC)P

OLD NEW\n");
fprintf(results,"%6.Gf %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

*6.'fn"TOTD2md. 2difTDEV2,time2,diffl,oldprod,newprod);

Eclose (results);

ele /* effort actual > estimate ~

if (TDEV2 ;-- time2) ,'* ohecks if sked estimates are jreatf-r
/* than actuals */

diff =(md2-TOTMD2)/mrci2; /* error rat~e for effort *

(fiffl (TDEV2-time2)/time2;/f* error rate for 3ked *

155

results = fopen("REPORT.OUT","a");
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\nn);
fprintf (results, "TOTMD2 CtUh'Th2 ERROR TDEV2 TDI2E2 ERRORR

OLD NEW\n");
fprintf(results,n%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n", TOTMD2,md2, diff,
TDEV2, time2, diffi, oldprod, newprod);

fclose (results);

else /* actuals for effort and sked are > estimates *

diff -(md2-TOTMD2)/md2; /* error rate for effort ~
diffi (time2-TDEV2)/time2;/* error rate for sked *
results = fopen("REPORT.OUT", "a");
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD2 CtUMMhD2 ERROR TDEV2 TflE2 ERROR

OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n", TOTMD2,md2, diff,
TDEV2,time2,diffl,oldprod,newprod);

fclose (results);

void main (void)

/* Declarations for variables used within this program *
int i, k=O, m=-O, n=O, p=O, KDSI(2], KDS12[2];
int count=O, loop_lim, nurn;
float j, md, time, TOTMD1, TDEV1, DSMI[26], diff, diffl, pcnt;
float md2, time2, TOTMD2, TDEV2, DSM12[26], diff2, diff3, pcnt2;
float oldprod, newprod,oldprod2, newprod2;
float TVALS[2],TVALS2(2],factor[7],factor2[4];
char string(12], string2[l2], strngfl2], strng2[12];
c-.ar dest[l21, destl[12], dest2[12], dest3[12];
FILE *fpin, *fdata, *results;

/* initializes the all of the destination strings as null *
for (i=O;i<12;i++)

dest~iI = \O
destl(i] - \1
dest2(i] - 'NO';
dest3li] - 'NO'0;
stringfi] 1\"
string2(i] 1\1
strngti] = 'NO;
strng2[i] =\'

,Read the outfile.dnx: Binary file used in reporting *
/* Easier to work with binary in this case ~

if ((fdata - fopen(noutfile2.dnx","rb"))=-NULL)

156

fprintf(stderr,"Unable to open file %s \n","outfile2.dnx");

else

fread((void DSMI,26 * sizeof(float),lfdata);
fread((void *) DSMI2,26 * sizeof(float),l,fdata);
fread((void *) KDSI,2 * sizeof(int),l,fdata);
fread((void *) KDSI2,2 * sizeof(int),l,fdata);
fread((void *) TVALS,2 * sizeof(float),l,fdata);
fread((void *) TVALS2,2 * sizeof(float),l,fdata);
fread((void *) factor,7 * sizeof(float),lfdata);
fread((void *) factor2,4 * sizeof(float),l,fdata);
fread((void *) &loop lim,sizeof(int),l,fdata);
fclose (fdata);

fpin = fopen("SIMTWO.OUT","r"); /* get output fror 3imulation */
/* Project 1 */

/* GET EFFORT VALUE FROM SIMULATION OUTPUT FILz */
i = fgetc(fpin); /* get first character from output file */

while (i != 40) /* continue getting characters until ascii */

/* #40 ' (' */

i = fgetc(fpin);

i = fgetc(fpin);
while (i != 41) /* now get each char and save as string */

string[k] = i;
k++; /* fill up string project 1 effort */
i = fgetc(fpin);

string(k]=' \0'
i = fgetc(fpin);

/* GET EFFORT VALUE FROM SIMULATION OUTPUT FILE */
while (i != 40)

g
i = fgetc (fpin)

i = fgetc (fpin) ;
while (i != 41) /* continue getting characters until ascii */

/* #40 ' (' *I

string2[m] = i;
m++; /* fill up string project 2 effort */
i = fgetc(fpin);

string2[m] - ,\0';
i = fgetc(fpin);

/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE */
while (i != 40) /* continue getting characters until ascii */

/* #40 ' (' */

i - fgetc(fpin);

i - fgetc(fpin) ;
while (i != 41) /* continue getting characters until ascii */

157

/* #41 ")' */

strng[n] = i;
n++; /* fill up string project 1 sked */
i - fgetc(fpin);

strng[n] = '\0'; /* null */

i = fgetc (fpin) ;

/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE */
while (i !- 40) /* continue getting characters until ascii */

/* #40 ' (' */
i -
i = fgetc (fpin) ;

i = fgetc (fpin) ;
while (i != 41) /* continue getting characters until ascii */

/* #41 ')' */

strng2[p] =i;
p++; /* fill up string project 2 sked */
i = fgetc(fpin);

strng2[p] = '\0';
fclose (fpin) ;

strncpy(dest,string,k); /* copy actual proj 1 effort into dest string */
md - atof(dest); /* string to float conversion */
strncpy(destl,string2,m);/* copy actual proj 2 effort into destl string */
md2 - atof(destl); /* string to float conversion */
strncpy(dest2,strng,n); /* copy actual proj 1 sked into dest2 string */
time - atof(dest2); /* string to float conversion */
strncpy(dest3,strng2,p); /* copy actual proj 2 sked into dest3 string */
time2 = atof(dest3); /* string to float conversion */

oldprod = DSMI[23]; /* changes productivity variable name for */
oldprod2 = DSMI2123]; /* reporting purposes */

/* Calculate the new productivity values which change dynamically */
/* with changes in effort and schedule */
DSMI[23] = prod(factor[0],md,(TVALS[1]/19.0),KDSI);
DSM1223] = prod(factor2[0],md2, (TVALS2[I]/19.0),KDSI2);

count = KDSI[l]; /* counter initialization */
while (count != loop_lim) /* checks to see if count equals the */

/* limit on number of loops */
/* looplim is inouted directly by user

if (TVALS(0] >- md) /* checks if proj 1 effort estimates are */
/* greater than actuals */

if (TVALS[I] >- time) /* checks if proj 1 sked estimates are */
/* greater than actuals */

diff = (TVALS(0]-md)/md; /* calc error rates for efiort *
diffl = (TVALS(l]-time)/time; /* calc error rates for sked */
results - fopen("REPORT.OUT","a");

/* output format */

158

fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\nn);

fprintf (results, "TOTMD1 CU'.2"1 ERROR TDEVl TINE1 ERPR
OLD NEW\nn);

fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f
%6.2f\n",TVALS[O] ,md,diff,

TVALS[l],time,diffl,oldprod,DSMI[23J);
f close (results) ;

/* check to see if error rates meet requiremnets *
if ((diff =- 0 && diffi <- factor[4]) I

(diff <= factor(3] && diffi == 0)
(diff <= factor(3] && diffi <- factor[4]))

//* if it meets requirements go to cktwo to check proj 2 *
cktwo(TVALS2[0] ,TVALS2[1],md2,

time2,oldprod2,DSMI2 [23] ,factor);

else

/* if it meets requirements go to passtwo to check proj 2 *
passtwo (TVALS2 [0], TVALS2 [1] ,md2,

time2,oldprod2,DSMI2[23]);

else /* effort estimates > actuals and *
/* sked actuals > estimates */

diff = (TVALS(0]-md)/md; /* calc error rates for effort *
diffi = (time-TVALS~l])/time; /* calc error rates for sked ~
results - fopen("REPORT.OUT","au);

/* output format */
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD1 CUMM1 ERROR TDEV1 TIMEl W

OLD NEW\n");
fprintf(results,"%6.Of %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n",TVALS[0] ,md,diff,
TVALS~lI1,time,diffl,oldprod,DSMI[23]);

fclose (results);

/* check to see if error rates meet requiremnets *
if ((diff -= 0 && diffi <= factor[4]) I

(diff <= factor[3] && diffl == 0) I
(diff <= factor(3] && diffi <- factor[4J))

/* if it meets requirements go to cktwo to check proj 2 *
cktwo (TVALS2 (0] ,TVALS2 [1] ,md2,

time2,oldprod2,DSMI2 [23] ,factor);

else

/* if it meets requirements go to passtwo to check proj 2 *
passtwo (TVALS2 [0] ,TVALS2 [1),md2,

time2,oldprod2,DSMI2[23]);

else /* effort actuals > estimates *

159

if (TVALS[1] >- time) /* checks if proj 1 sked estimates are *
/* greater than actuals */

diff - (md-TVALS(O]l/md; 1* caic error rates for effort *
diffi - (TVALS(1]-time)/time; /* caic error rates for sked *
results = fopen("REPORT.OUT","a");

/* output format */
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD1 CUMMD1 ERROR TDEVl TIME1 ER

OLD NEW\n");
fprintf(results,"%6.2f %6.Of %6.2f %6.Of %6.Of %6.2f %6.2f

%6.2f\n",TVALS[O],md,diff,TVALS(l],
time,diffl,oldprod,DSMI[23]);

f close (results) ;

/* check to see if error rates meet requiremnets *
if ((diff == 0 && diffi <= factor[4])

(diff <= factor[3] && diffi -- 0) I
(diff <= factor(3] && diffl <= factor[4))

/* if it meets requirements go to cktwo to check proj 2 *
cktwo (TVALS2 (0] ,TVALS2 (1] ,md2,

time2,oldprod2,DSMI2[23] ,factor);

else /* does not meet error rate requirements *

/* if it meets requirements go to passtwo to check proj 2 *
passtwo(TVALS2(0l ,TVALS2[l] ,md2,
time2,oldprod2,DSMI2 [23]);

else /* effort and sked actuals are > estimates ~

diff =(md-TVALS[OD)/md; /* calc error rates for effort *
diffi (time-TVALS~l])/time; /* caic error rates for sked ~
results =fopen("REPORT.OUT","a");

/* output format *
fprintf (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");
fprintf(results,"TOTMD1 CUMMDl ERROR TDEVl TIME1 HIFR

OLD NEW\z."';
fprintf(results,"%6.Of %6.0f %6.2f %6.0f %6.Of %6.2f %6.2f

%6.2f\n",TVALS(0] ,md,diff,
TVALS(l],time,diffl,oldprod,DSMI [23]);

fclose (results);

/* check to see if error rates meet requirernets *
if ((diff -- 0 && diffl <- factor[4]) I

(diff <- factor(3] && diffl 0) 0)
(diff <= factor(3] && diffi <= factor[4]))

/* if it meets requirements go to cktwo to check prcj 2 '

cktwo(TVALS2[0] ,TVALS2[1] ,md2,
time2,oldprod2,DSMI2E23],factor);

else

160

/* if it meets requirements go to passtwo to check proj 2 */

passtwo(TVALS2[0],TVALS2[1],md2,
time2,oldprod2,DSMI2[23]);

count++; /* counts number of loops or iterations */
KDSI([] = count; /* re-sets counter number for next run
KDSI2[l] = count;

TVALS(0] = md*factor(l]; /* adjusts effort updates for proj 1 */
TVALS[I] = time*factor[2]; /* adjusts sked updates for proj 1 */
TVALS2[0] = md2*factor2[l]; /* adjusts effort updates for proj 2 */
TVALS2[1] = time2*factor2[2]; /* adjusts sked updates for proj 2 */

file_pas(TVALS,TVALS2,KDSI,KDSI2,DSMI,DSMI2,factor,factor2,loop_Iim);

/* checks looplim against count to see if done */
if (c-unt != loop_lim)

exit (1); /* exits program for next iteration */

else /* count equaled loop_lim and is ready to exit program */

/* opens results file to print out at bottom of */
/* ruport.out a reminder of availability of */
/* cutput data */
resul-s = fopen("REPORT.OUT","a");
fprir.tf(results,"\n\n**** This data is available in REPORT.OUT ****\n");
fpriitf (results, "**** Each time the model is run REPORT.OUT will change

****\n");

fclo (results);
I /I if */

} /* whil-e */

/* sets clirsor at (col,row) */
/* Format Lor output of data */
gotoxy(iC 10);
printf(" REPORT FORMAT CHOICE\n");
gotoxy(10 12);
printf(" 1 - Display results\n");
gotoxy(1C 13) ;
printf(" 2 - Print results\n");
gotoxy(10,14);
printf(" 3 - Exit\n");
gotoxy (10, 16);
printf("Enter one of the above: ");
scanf("%d",&num);

switch(num)

case 1:
clrscr();
exit(4); /* sends to screen via DOS */

case 2:
clrscr();
exit(3); /* sends to printer via DOS */

case 3:

161

exit (0); /* exits program, but output */
/* still available in report.out file */

/* end program */

162

LIST OF REFZRZNCZS

ABDEL-HAMID, T. K. AND S. E. MADNICK, "Lessons Learned from
Modeling the Dynamics of Software Development," Communications
of the ACM, 32, 12, December (1989), 1426-1438.

ABDEL-HAMID, T. K. AND S. E. MADNICK, Software Project
Dynamics: An Integrated Approach, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1991.

ABDEL-HAMID, T. K. AND S. E. MADNICK, Software Development
Dynamics: An Integrated Approach, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1990.

AGAN, C. E., Couplincr Artificial Inteligence and a System
Dynamics Simulation to Optimize Quality Assurance and Testing
in Software Development, Thesis, Naval Postgraduate School,
1990.

BOEHM, B. W., "Improving Software Productivity," Computer
(September 1987), 43-57. , Survey & Tutorial Series.

BOEHM, B. W., "Software Engineering Economics," IEEE
Transactions on Software Engineering, SE-10, 1, January
(1984), 4-21.

BOEHM, B. W., Software Engineering Economics, ed. R. T. Yeh,,
Pretntice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

GHEZZI, C., M. JAZAYERI, AND D. MANDRIOLI, Fundamentals of
Software Engineering, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1991.

KITFIELD, J., "Is Software DOD's Achillies' Heel?," Military
Forum (July 1989), 28-35.

PRESSMAN, R. S., Software Engineering: A Practitioner's
Approach, 2nd ed., Series in Software Engineering and
Technology, McGraw-Hill, Inc., 1987.

SCHLENDER, B. R., "How to Break the Software Logjam," Fortune
(25 September 1989), 100-112.

UNITED STATES. CONGRESS. HOUSE. COMMITTEE ON GOVERNMENT
OPERATIONS, DOD Automated Systems Experience Runaway Costs and
Years of Schedule Delays While Providing Little Capability,
H.Rept 382, 101st Cong., 1st sess., GPO, Washington, DC, 1989.

i63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Tarek K. Abdel-Hamid, Code AS/AH 5
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Magdi Kamel, Code AS/KA 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93943-5000

5. CDR T. J. Hoskins
Computer Technology (37)
Naval Postgraduate School
Monterey, CA 93943-5000

6. LT Richard W. Smith 2
1841 Dellwood Dr.
Norfolk, VA 23518

164

